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                                                                 CHEMICAL THERMODYNAMICS –PART B                                S.Y.B.Sc 

 

Fugacity: 

a)It is a measure of escaping tendency of a substance. It was introduced by 

G.N.Lewis to permit the free energy calculations of real gas. 

b)Fugacity is a term which substitutes pressure in ideal gas free  

  energy calculation. It has same unit as pressure. 

c)The relation of free energy with fugacity is given by  

                              G = RTlnf + C                               ------------I 

where , f – fugacity of the substance 

C – constant  whose value depends upon temperature and nature of the 

substance. 

To evaluate the constant C, standard states are taken into consideration.  

Equation – I in standard state can be written as  

                              G0 =  RTlnf 0+ C                       ------------II 

Subtracting II from I, we get , G – G0 = RTlnf  – RTlnf 0 

                     G – G0 = RTln
𝒇 

𝒇𝟎
     

                             G = G0  + RTln
𝒇 

𝒇𝟎
     

                             G =  G0 +  RTln a 

where a = 
𝒇 

𝒇𝟎
    = activity of the substance 

Activity :  

Activity can be defined as the ratio of fugacity of the substance in the 

given state to the fugacity of the same substance in standard state. 

In standard state, a = 1 . Therefore G = G0 

The concept of activity introduced to gas as well as for solution, it accounts 

for the following parameters: 

i) Attractive forces existing between the gas molecules. 

ii) Nature of solid substance whether ionic or covalent  
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iii) Ionizing nature of the solute. 

The above three factors are responsible for the breaking of ideal system 

behavior than the real system. This can be accounted by the expression for 

free energy change. 

For ideal system , ∆G = 2.303nRT log
𝐏𝟐 

𝐏𝟏
 ------------(1) 

For real system ,   ∆G = 2.303nRT log
𝐚𝟐 

𝐚𝟏
 ------------(2)  

Equation 2 gives exact value of ∆G when applied to real system. 

Activity Coefficient: 

a) It is represented by the symbol γ  

b) For a gaseous system, it is a measure of extent of deviation of real 

behaviour of gas from ideal behaviour, which is expressed as a ratio of 

fugacity  to pressure of the gas. 

ie. γ= 
𝒇 

𝐏
  , where , f  - is fugacity of gas and P – pressure of the gas 

for ideal gas , γ = 1, therefore, fugacity = pressure. Thus a real gas 

approaches to ideal behavior at very low pressure and high temperature. 

The activity coefficient of the solutions is defined as γ= 
𝒂 

𝐦
  where a  - 

activity of the electron , m – molality of the solution. 

For an ideal solution , concentration = active mass 

But for a real solution, some of the portion of the solute in solution may 

get partially solvated or may remain non-solvated. If the later part 

reacts, then this portion only account for the active mass. Hence, activity 

coefficient may be regarded as a measure of extent to which an ion or 

molecule departs from ideal behavior.  

Law of mass action. 

a) It gives the relation between rate of a chemical reaction with the active 

masses of the reactant. 

b) It was put forward by Guldberg and Peter Waage in 1864. 

c) The law of mass action states that the ratio at which a substance reacts 

is proportional to its active mass and the rate of a chemical reaction 
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is proportional to the product of the active masses of the reactants, 

with each active mass term raised to a power equal to its 

stoichiometric coefficient in the balanced chemical equation. 

Eg. consider the following reaction 

aA + bB + cC → products 

if [A], [B] and [C] represent molar concentrations (active masses) of A, B 

nad C respectively, then by law of mass action, 

Rate of reaction ∝ [A]a[B]b[C]c 

Rate of reaction = k[A]a[B]b[C]c 

Where, k is rate constant of the reaction. 

 

 

 

Equilibrium constant and its characteristics. 

Equilibrium constant : It is defined as the ratio of the products of the 

equilibrium concentration (mol/dm3) of products to the product of the 

equilibrium concentration of the reactants with the concentration of each 

substance raised to the power equal to its stoichiometric coefficient in the 

balanced chemical equation. 

Explanation : Consider the following reversible reaction at equilibrium: 

  aA + bB  ⇄  cC + dD 

By the law of mass action, 

Rate of forward reaction ∝ [A]a[B]b 

ie. Rate of forward reaction(Rf) = kf [A]a[B]b 

    Where, kf is rate constant of the forward reaction. 

Similarly, 

Rate of backward reaction ∝ [C]c[D]d 

ie. Rate of forward reaction(Rb) = kb[C]c[D]d 

    Where, kb is rate constant of the backward reaction. 

At equilibrium, Rf = Rb 
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    kf [A]a[B]b = kb[C]c[D]d 

therefore, 
𝑘𝑓

𝑘𝑏
=

[𝐶]𝑐 [𝐷]𝑑

[𝐴]𝑎 [𝐵]𝑏
  or 

                𝐾𝑐 =
[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎 [𝐵]𝑏
   

 Where , kc is equilibrium constant o reaction in moles dm–3  

For a reaction involving gaseous reactants and products at equilibrium, the 

equilibrium constant is expressed in terms of partial pressure as kp and is 

given by the expression, 

               𝐾𝑝 =
𝑃𝐶

𝑐𝑃𝐷
𝑑

𝑃𝐴
𝑎𝑃𝐵

𝑏   

Characteristics of equilibrium constant are as follows: 

1) The magnitude of equilibrium constant is unaffected by changes in 

concentration of reactants or products, pressure and catalyst involved in 

reaction. 

2)The equilibrium constant value changes with change in temperature. For 

exothermic reaction, the equilibrium constant decreases with rise in 

temperature. 

3)The expression for equilibrium constant of a reaction is devoid of  

    concentration of pure solids or pure liquid. 

4) The value of equilibrium constant is dimensionless. 

5) The form of equilibrium constant expression and the numerical  

    value of equilibrium constant depend on the form of balanced  

    chemical equation. 

    For eg. 2NO + O2⇄ 2NO2 

     𝑘𝑐 =
 𝑁𝑂2 

2

[𝑁𝑂]2 𝑂2 
  

     If the reaction is written in reverse manner 

       2NO2   ⇄  2NO + O2 , then 

      𝑘′𝑐 =
[𝑁𝑂]2 𝑂2 

 𝑁𝑂2 2  

     ∴ it follows that 𝑘𝑐 =
1

𝑘′𝑐
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Relation between kp and kc. 

Consider the following reversible reaction at equilibrium, 

aA + bB  ⇄  cC + dD 

the equilibrium constant in terms of partial pressure is given by , 

       𝐾𝑝 =
𝑃𝐶

𝑐𝑃𝐷
𝑑

𝑃𝐴
𝑎𝑃𝐵

𝑏 -------------------(1) 

The equilibrium constant kc in terms of moles dm–3 is given by, 

      𝑘𝑐 =
[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎 [𝐵]𝑏
  -------------------(2) 

From the ideal gas equation PV = nRT 

      P = 
𝒏𝑹𝑻

𝑽
=cRT ----------------(3) 

Therefore, 𝑃𝐶
𝑐  = 𝐶𝐶

𝑐(𝑅𝑇)𝑐 , 𝑃𝐷
𝑑  = 𝐶𝐷

𝑑(𝑅𝑇)𝑑  , 𝑃𝐴
𝑎  = 𝐶𝐴

𝑎(𝑅𝑇)𝑎 , 𝑃𝐵
𝑏  = 𝐶𝐵

𝑏(𝑅𝑇)𝑏--(4) 

Substituting (4) in equation (1), we get, 

     𝐾𝑝 =
𝐶𝐶

𝑐 𝑅𝑇 𝑐 .𝐶𝐷
𝑑  𝑅𝑇 𝑑

𝐶𝐴
𝑎  𝑅𝑇 𝑎 .𝐶𝐵

𝑏  𝑅𝑇 𝑏
 

          =  
𝐶𝐶

𝑐𝐶𝐷
𝑑

𝐶𝐴
𝑎 .𝐶𝐵

𝑏 .
 𝑅𝑇 𝑐+𝑑

 𝑅𝑇 𝑎+𝑏   

    𝐾𝑝 = 𝐾𝑐 𝑅𝑇 𝑐+𝑑 −(𝑎+𝑏)     from equation (2) 

    ∴ 𝐾𝑝 = 𝐾𝑐 .𝑅𝑇∆𝑛  , where ∆n = (c+d) – (a+ b)  

Variation of the equilibrium constant with pressure (derivation of Vant 

Hoff reaction isotherm equation) 

The equilibrium constant, to a certain extent is found to change with change 

in pressure at constant temperature. The vant Hoff reaction isotherm gives a 

relationship between standard free energy change and equilibrium constant 

of the reaction. The relation is obtained as follows: 

Consider the following reversible reaction at equilibrium 

                      aA + bB  ⇄  cC + dD 

The equilibrium constant kp for the change reaction is given by 

                                 𝐾𝑝 =
𝑃𝐶

𝑐𝑃𝐷
𝑑

𝑃𝐴
𝑎𝑃𝐵

𝑏 -------------------(1) 

The Gibb’s free energy for a system is defined as, 
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                                G = H – TS  where,  H is enthalpy of the system , 

                                                               T – temperature , 

                                                               S – entropy of the system 

But H = U + PV 

Therefore, G = U  + PV – TS     ------------------------------------(2) 

On differentiation of equation (2) we get, 

                dG = dU + PdV + VdP – TdS – SdT 

From 1st law dU = dq – PdV    -------------------------------------(3)  

               and dq = T.dS --------------------------------------------(4) 

Substituting (3) and (4) in equation (2) we get, 

               dG = dq – PdV + PdV + VdP – dq – SdT 

Therefore , dG = VdP – SdT --------------------------------------(5) 

At constant temperature dT= P, therefore dG = VdP----------(6) 

For the reaction in equation (1), assume that the reactants and products are 

ideal gases. 

For one mole of an ideal gas, 

                   PV = RT 

 Therefore,    V =
𝑅𝑇

𝑃
 ------------------------------------------------(7) 

Substituting (7) in equation (6) we get, 

                   dG = 
𝑅𝑇 .𝑑𝑃

𝑃
 --------------------------------------------(8) 

Integrating equation (8) we get, 

          𝑑𝐺 = RT  
1

𝑃
.𝑑𝑃 

             G = RTlnP + c ---------------------------------------------(9) 

Where c is the constant of integration. 

To evaluate c, we apply the condition of standard state. In standard state, P = 

1 atm 

            G0 = RTln(1) + c     

        ie. G0 = c -------------------------------------------------------(10) 

Substituting (10) in equation (9) we get, 

             G = G0   + RTlnP ------------------------------------------(11) 
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For reaction in equation (1)   , the free energy change ∆G is given by, 

            ∆G =  𝐺𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 −  𝐺𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡  

                  = (cGC + dGD) – (aGA + bGB) -----------------------(12) 

Expressing free energies of reactants and products in the form of equation 

(11) we get, 

           aGA = aGA  + aRTlnPA  

           bGB = bGB  + bRTlnPB     -----------------------------------(13) 

           cGC = cGC  + cRTlnPC 

           dGD = dGD + dRTlnPD 

 

Substituting equation (13) in equation (12) we get      

 ∆G = [(cG0
C + cRTlnPC)+( dG0

D + dRTlnPD)] – [(aG0
A + aRTlnPA)+( bG0

B + 

bRTlnPB)]  --(14) 

On rearranging equation (14) we get, 

∆G = [(cG0
C + dG0

D ) – (aG0
A + bG0

B )] + (RTlnPc
C+ RTlnPd

D) – 

(RTlnPa
A)+(RTlnPb

B) 

∆G = ∆G0 + 𝑅𝑇𝑙𝑛
𝑃𝐶

𝑐𝑃𝐷
𝑑

𝑃𝐴
𝑎𝑃𝐵

𝑏 

∆G = ∆G0 + RTlnkp  (from equation (2)) 

At equilibrium ∆G = 0 

Therefore, ∆G0= – RTlnkp 

Or ∆G0 = – 2.303RTlog10kp -----------------------------------------(15)   

Equation (15) is known as vant Hoff reaction isotherm. This is considered as 

a thermodynamic derivation of a law of chemical equilibrium. 

Variation of equilibrium constant with temperature (derivation of Vant 

Hoff reaction isochore equation ) 

The equilibrium constant of a reaction depend upon temperature and it 

changes with change in temperature. The variation of equilibrium constant 
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with temperature is given by vant Hoff reaction isochore, which is derived as 

follows: 

Consider a gaseous chemical reaction at equilibrium assuming the reactants 

and products as ideal gases. 

                      aA(g) + bB(g)   ⇄  cC(g)  + dD(g) 

The equilibrium constant Kp for this reaction is given by 

                                 𝑲𝒑 =
𝑷𝑪

𝒄𝑷𝑫
𝒅

𝑷𝑨
𝒂𝑷𝑩

𝒃  

The standard free energy change ∆G0 is related to the equilibrium constant kp 

by the relation, 

                                ∆G0 = – RTlnkp --------------------------(1) 

Differentiating equation (1) w.r.t. temperature at constant pressure, we get, 

                 
𝑑(∆𝐺0)

𝑑𝑇
 
𝑃
 = – Rlnkp – RT

𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 -----------------------(2)  

Multiplying equation (2) throughout by T, we get 

                𝑇  
𝑑(∆𝐺0)

𝑑𝑇
 
𝑃
 = – RTlnkp – R𝑇2 𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 ----------------(3)  

But , ∆G0 = – RTlnkp 

Therefore,    𝑇  
𝑑(∆𝐺0)

𝑑𝑇
 
𝑃
 = +∆G0 – R𝑇2 𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 -----------------(4) 

From Gibbs_Helmholtz equation in standard conditions, 

∆G0 = ∆H0 + 𝑇  
𝑑(∆𝐺0)

𝑑𝑇
 
𝑃
 

Therefore, 𝑇  
𝑑(∆𝐺0 )

𝑑𝑇
 
𝑃
= ∆G0 – ∆H0 -----------------------------(5) 

Comparing equation (5) with (4) we get, 

                ∆H0=  – R𝑇2 𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 --------------------------------------(6) 

  or            
𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 = 

∆𝐻0

𝑅𝑇2
-----------------------------------------------(7) 

Equation (7) is referred as van’t Hoff reaction isochore because it was 

first developed by Vant Hoff for a system at constant volume. In practice, it is 

observed that for a chemical reaction, the difference between ∆H and ∆H0 is 
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almost negligible. Hence replacing ∆H0 by ∆H in equation (7) we get, 

                 
𝑑𝑙𝑛 𝑘𝑝

𝑑𝑇
 = 

∆𝐻

𝑅𝑇2-----------------------------------------------(8) 

If 𝐾𝑝1
 and 𝐾𝑝2

 are equilibrium constants of a reaction at temperature T1 and 

T2 respectively (T2 > T1) , then integrating equation (8) we get, 

 
𝑑𝑙𝑛𝑘𝑝

𝑑𝑇
=  

∆𝐻

𝑅𝑇2
−−−−− (9)

𝑇2

𝑇1

𝐾𝑝2

𝐾𝑝1

 

 

On rearranging equation (8) and assuming ∆H to remain constant obe the 

temperature range T1 and T2 , we get, 

 𝑑𝑙𝑛𝑘𝑝 =
∆𝐻

𝑅
 

1

𝑇2
. 𝑑𝑇

𝑇2

𝑇1

𝐾𝑝 2

𝐾𝑝1

 

                                     𝑙𝑛𝑘𝑝 𝑘𝑝1

𝑘𝑝2 =
∆𝐻

𝑅
 −

1

𝑇
 
𝑇1

𝑇2

             −− −−− (10) 

𝑙𝑛𝑘𝑝2
− 𝑙𝑛𝑘𝑝1

=
∆𝐻

𝑅
 −

1

𝑇2
+

1

𝑇1
  

       ∴ 𝑙𝑛
𝑘𝑝2

𝑘𝑝1

=
∆𝐻

𝑅
 

1

𝑇1
−

1

𝑇2
  

                                  2.303𝑙𝑜𝑔
𝑘𝑝2

𝑘𝑝1

=
∆𝐻

𝑅
 

1

𝑇1
−

1

𝑇2
 − − − − − −(11) 

Equation (11) is the integrated form of Vant Hoff equation. 

Applications of Vant Hoff reaction isochore equation: 

1) It helps to calculate ∆H if 𝑘𝑝1
 and 𝑘𝑝2

, T1 and T2 are known. 

2) It helps to calculate equilibrium constant value at any temperature 

provided ∆H is known for the reaction.   

 


