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                         Chemical Thermodynamics                                      S.Y.BSc. 

 Concept of  Gibb’s free energy and Helmholtz  free energy 

 a) Gibb’s free energy: 

1) It was introduced by J.Willard Gibb’s to account for the work of 

expansion due to volume change in chemical process , while 
explaining the concept of maximum work. 

 
2) It is represented by the symbol ‘G’. 

 

 

3) It is defined as, G = H – TS  
 

4) It is a state function because enthalpy(H), entropy(S) and 

temperature (T) are state functions. 
 

 

5) It is also defined as energy available to do useful work. 
 

6) It is a property that provides a convenient measure of driving force of 

the reaction. 
 

 

7) When a system changes from one state to another, the net available 
energy under specified conditions results from decrease in Gibb’s free 
energy of the system. 

 
8) The Gibb’s free energy change ∆G is related to enthalpy change ∆H 

and entropy change ∆S by the relation ∆G = ∆H – T∆S. 
 

 
9) For a spontaneous chemical reaction to occur, ∆G must be negative. 

 
10)For a chemical reaction at equilibrium, the equilibrium constant is 

related to free  energy change by the relation –∆G = RTlnKp 

This equation suggest that for a spontaneous change, Kp value 

becomes very large indicating that the reaction proceeds to a maximum 

extent in forward direction. 

b) Helmholtz  free energy: 

1) It is represented by the symbol A and is defined as , A = U – TS  

Where, U is the internal energy of the system 
             T is temperature of the system 

             S is Entropy of the system. 
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2) As entropy, temperature and internal energy are state functions, 
Helmholtz free energy is also a state function. 
 

3) For any chemical reaction, the total internal energy is not utilized to 

do useful work. Some part of this energy is lost to bring about the 

entropy change. If ‘dS’ is the entropy change, then the energy lost is 

given by, 

                    𝐝𝐒 =
𝐝𝐪𝐫𝐞𝐯

𝐓
 ∴  𝐝𝐪𝐫𝐞𝐯 = 𝐓 ∙ 𝐝𝐬……………… . . (1)   

If the energy in the above equation(1) is subtracted from the total 

energy dE of the system, then the remaining energy will be useful to do 

work at constant temperature from the system. It is this energy which 

is called Helmholtz free energy or work function. 

4) For a process carried out at constant temperature, the maximum 
work done by the system is obtained at the expense of decrease in 
Helmholtz free energy or work function. 

Relation between Gibb’s free energy and Helmholtz free energy: 

Gibb’s free energy is defined as G = H – TS  

For a system undergoing change at constant temperature, the free 
energy change ∆G is given by, ∆G = ∆H – T∆S ………………(1) 

Helmholtz free energy (A) is defined as , A = U – TS 

 
For a system undergoing change at constant temperature, the change 

in the Helmholtz free energy is given by ,  
                 
                 ∆A =∆U – T∆S……………..(2) 

 
But enthalpy change for a chemical reaction at constant pressure is 
given by, 

                 ∆H = ∆U + P∆V……………..(3) 
 

Substituting (3) in equation (1) we get, 
    
              ∆G = ∆U + P∆V – T∆S 

       
      ie. ∆G = ∆U – T∆S + P∆V  
 

Since , ∆A = ∆U – T∆S  from  equation (2), we get 
                  

                ∆G = ∆A + P∆V 
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The Gibb’s free energy change differ from Helmholtz free energy change 

by work of expansion ie. P∆V  

 Significance of Gibb’s free energy 

 A chemical reaction is governed by three important thermodynamic 
state functions: 
 

a) Enthalpy change ∆     b) Entropy change ∆S   c) Gibb’s free energy 
change ∆G 

 
The above three are related by the equation  ∆G = ∆H – T∆S-----------(I) 
Equation (I) has a great significance as it decides the spontaneity of a 

process. For a reaction to be spontaneous, the free energy change must 
be negative. However, the sign of free energy depends upon the sign of 
∆H and ∆S. hence four distinct cases arises: 

 Sign of ∆H        Sign of ∆S        Sign of ∆G        Remark 

I  – ve  
Exothermic  

+ ve  
Endothermic 
 

Always   –ve  Reaction is 
spontaneous at 
all 

temperatures 

II + ve  

Endothermic 
 

 – ve  

Decrease in 
entropy 

Always   +ve  Reaction is 

non-
spontaneous at 
all 

temperatures 

III  – ve  

Exothermic  

 – ve  

Decrease in 
entropy 

Depends upon 

temperature: 
i) At low 

temperature 
     T∆S < ∆H   
 

ii) At high 
temperature 
     at T > Ti 

where, 

    Ti = 
∆𝐻

∆𝑆
   

 

 
Reaction is 

spontaneous at 
low 
temperature. 

Reaction is 
non-
spontaneous at 

high 
temperature. 

IV + ve  

Endothermic 

 + ve  

increase in 
entropy 

Depends upon 

temperature: 
i) At low 

temperature 
     T∆S < ∆H   
 

ii) At high 
temperature 

 

 
Reaction is 

non-
spontaneous at 
low 

temperatures 

Reaction is 



4 
 

         T∆S > ∆H   spontaneous at 

high 
temperature 

  
 
In general , one can conclude that the sign of ∆G helps to decide the 

nature of process as shown below: 
∆G < 0    process is spontaneous 

∆G > 0    process is non-spontaneous 
∆G = 0    process has reached equilibrium 

 Variation of  Gibb’s free energy with temperature and pressure  or 

Show that  
𝜹𝑮

𝜹𝑻
= 

𝑻
= 𝑽  𝐚𝐧𝐝  

𝜹𝑮

𝜹𝑻
= 

𝑷
= 𝑻   

 Gibb’s free energy is defined as G = H – TS --------------(i) 

where, H is the enthalpy of the system 
             T is absolute temperature 
             S is Entropy of the system 

For infinitesimal change, equation (i) can be written as, 

  dG = dH – SdT  -TdS  -------------- (ii) 

 

By definition H = U + PV; dH = dU + VdP  +  PdV   ------------(iii) 

fFom the first law of thermodynamics, 

dU = dq + dW 

 

If work is of expansion type, then dw =  – PdV  therefore,  

             dU = dqrev – PdV  

If the process is reversible , then for a closed system 

dqrev =  – PdV -------------------(iv)      and dqrev =  T.dS 

where, dS is infinitesimal entropy change for a reversible process 

substituting (iii) and (iv) in the equation (i) we get, 

          dG = dU + PdV + VdP – dqrev – SdT 

                =  dqrev – PdV + PdV + VdP –  dqrev – SdT 

                = VdP – S.dT-----------------(vi) 

At constant pressure, dP = 0 

          dG = – S.dT      

          
𝛿𝐺

𝛿𝑇
 
𝑃

=  −𝑆 
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The rate of change of Gibb’s free energy with temperature at constant 

pressure is equal to decrease in entropy of the system. 

At constant temperature, dT = 0 

        dG = VdP      

          
𝛿𝐺

𝛿𝑇
 
𝑇

=  𝑉 

Thus the rate of change of Gibb’s free energy with respect to pressure 
at  constant temperature is equal to increase in volume occupied by 

the system. 

 

 
 

 

 
Gibb’s-Helmholtz’s equation and its application 
 

 Gibb’s free energy is defined as 
                    G = H – TS ----------------(1) 

Where,  H is the enthalpy of the system 
             T is absolute temperature 

             S is Entropy of the system 

 Enthalpy H is defined by the equation: 
                 H = U + PV -------------(2) U internal energy of the system  

                                                        P pressure 
                                                        V volume occupied by the system 
Substituting (2) in equation (1) we get, 

            G = U + PV – TS -----------(3) 
Differentiating equation (3) on both sides we get, 

dG = dU + PdV + VdP – TdS – SdT ------------(4) 
 
From 1st  law for a reversible process      

        dU = dqrev + dW 
 

If the work is of expansion type then, 
        dW =  – P.dV  
 

therefore, dU = dqrev – P.dV ----------------------(5) 
 

By definition, dS = 
dq rev

T
  ∴ dqrev = T. dS ----------------(6) 

Substituting (5) and (6) in equation (4) we get, 

 
dG = dqrev – P.dV + PdV– dqrev – S.dT + VdP 
 

dG = V.dP – S.dT  -----------------(7) 
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At constant pressure, dP = 0 

 
Therefore , dG = – S.dT --------------(8) 
 

Consider a system in which the following reaction occurs at constant 
pressure: 
                               A(reactant) → B(product) 
Let S1 and S2  be the entropies of the reactant and product respectively. 

If G1 and G2 are the free energies of A and B respectively then from 

equation 8, we get 

                     dG1 =  – S1dT   and dG2 =  – S2dT 
 

therefore,    dG2 – dG1 = – S2dT – (– S1dT) 
                
                 d(G2 – G1) = – S2dT + S1dT  

          
                 
                ie.  d(∆G)  =   – (S2 –S1)dT   

                 
                     d(∆G)   =   – ∆SdT   

 

therefore, ∆S = −
𝐝(∆𝐆)

𝐝𝐓
 ----------------(9) 

But, ∆G = ∆H  –T∆S  ------------------(10) 
 

Substituting (9) in equation 10 ,we get 

                          ∆G = ∆H+ 𝑇  
𝑑 ∆𝐺 

𝑑𝑇
 
𝑃
-----------------(11) 

Equation (11) is called Gibbs – Helmholtz equation. The term  
𝑑 ∆𝐺 

𝑑𝑇
 
𝑃
 is 

called temperature coefficient of free energy change. 

Applications :  

1) It is applicable for calculation of ∆G for all process occurring at 
constant pressure. 

 
2) It helps to calculate emf of the reversible cell. 
  

3) One can use this equation of a reversible cell for a reaction if free 
energy changes at two different temperatures are known. 
 

 Concept of phase equilibrium and  Clapeyron equation 

 The various process which involve phase transitions are vaporization, 

evaporation, condensation, fusion etc. In all these processes, there is 

no new substance formed. When substances involved in these 
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processes are in pure state, then after some time, these processes 

reach equilibrium at constant temperature and pressure. Thus we say 

that phases are in equilibrium with each other. This is possible if ∆G = 

0, where ∆G is the free energy change accompanying the process. 

Consider the following equilibrium between two phases A and B.   

                              𝑨𝒑𝒉𝒂𝒔𝒆 ⇌ 𝑩𝒑𝒉𝒂𝒔𝒆  

If GA and GB are the free energies of A and B per mole respectively, then 
                        ∆GT,P = GB – GA 

But at equilibrium ,  ∆GT,P = 0 
 
Therefore, GB = GA 

 

Thus when two phases of the same single substance are in equilibrium 

at a given temperature and pressure, then their molar free energy is 
same in each phase. 

 

Clapeyron Equation: 

Consider the following equilibrium between two phases A and B of the 
same substance at a given temperature. 

   𝑨𝒑𝒉𝒂𝒔𝒆 ⇄ 𝑩𝒑𝒉𝒂𝒔𝒆 

 

Let GA and GB are the free energies per mole of A and B per mole 
respectively, then 
 

At equilibrium ,        GA = GB -----------------(1) 
 
Now if the temperature is changed from T to T + δT, then the free 

energies of A and B will also change to GA + dGA and GB + dGB 
respectively. The system will again reach equilibrium, so 

 
                      GA + δGA = GB + δGB 
                        

But GA = GB ( from equation -1) 
                
                      Hence, dGA = dGB -------------(2) 

 
But dG = V.dP – S.dT --------------------(3) 

 
Therefore,  dGA = VA.dP – SA.dT ------(4) and dGB = VB.dP – SB.dT ----(5) 
 

Substituting equation (4) and (5) in equation (2) we get, 
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              VA.dP – SA.dT = VB.dP – SB.dT 
           
                  (VB – VA)dP =  (SB – SA)dT 

 

Therefore, 
𝒅𝑷

𝒅𝑻
=

∆𝑺

∆𝑽
 

 

But ∆S = 
∆𝑯

𝑻
 where ∆H is molar latent heat of phase change occurring at 

temperature T 

 

Therefore, 
𝒅𝑷

𝒅𝑻
=

∆𝑯

𝑻(∆𝑽)
 -----------------(6) 

 
Equation (6) is known as Clapeyran equation. 

 

  Clausius – Clapeyron equation and its applications 

 Consider the following type of equilibrium between two phases of same 
substance at constant temperature and pressure. 

                              𝐥𝐢𝐪𝐮𝐢𝐝 ⇄  𝐯𝐚𝐩𝐨𝐮𝐫 
If GA and GB are the free energies of liquid and vapour state 
respectively, then 
                                  GA = GB -----------------(1) 

 
If the temperature of the system is changed from T to T + dT with the 

corresponding change in pressure from P to P + dP, then  

 GA becomes GA + dGA and GB becomes GB + dGB  

After the change, again the two phases remain in equilibrium,  

                  ie.    GA + dGA = GB + dGB 
            

                    But since GA = GB  
                 
                      Hence, dGA = dGB -------------(2) 

 
But dG = V.dP – S.dT --------------------(3) 

 
Hence,  dGA = VA.dP – SA.dT ------(4) and  
    

          dGB = VB.dP – SB.dT ------(5) 
 
From equation (2), we have, 

         
          VA.dP – SA.dT = VB.dP – SB.dT 
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Therefore, (VB – VA)dP =  (SB – SA)dT 

              
                       ∆V.dP = ∆S.dT 
 

Therefore, 
𝒅𝑷

𝒅𝑻
=

∆𝑺

∆𝑽
 -----------(6) 

 

But, ∆S = 
∆𝐻

𝑇
 

Hence 
𝒅𝑷

𝒅𝑻
=

∆𝑯

𝑻(∆𝑽)
 -----------------(7) 

 
Equation (7) is known as Clapeyron equation. 
 

In terms of liquid- vapour equilibrium, equation (7) can be written as  
𝒅𝑷

𝒅𝑻
=

∆𝑯𝒗

𝑻(𝑽𝒗−𝑽𝒍)
------------(8) 

 Where, ∆𝐻𝑣 is molar heat of vaporization of the substance 
             Vv volume of vapour 
             Vl volume of liquid 

 
Clausius modified Clapeyron equation suggesting the following things. 

 
i) For vapourization and sublimation, Vv>>>>Vl , therefore volume of 

liquid can be  
    neglected   
 

ii) Assume the vapours to behave ideally. 
 
Applying the above modification to equation (8) , we ge 

                                                    
𝒅𝑷

𝒅𝑻
=

∆𝑯𝒗

𝑻𝑽𝒗
------------(9) 

For one mole of a vapour behaving ideally, 
                                           PVv = RT 

                                             

                                             Vv = 
𝑅𝑇

𝑃
   ----------(10) 

Substituting equation (10) in equation (9) we get 

 
𝑑𝑃

𝑑𝑇
=

∆𝐻𝑣 .𝑃

𝑅𝑇2 ------------(11) 

 
On rearranging equation (11) we get 

 
𝒅𝑷

𝑷
=

∆𝑯𝒗.𝒅𝑻

𝑹𝑻𝟐
------------(12) 

Or 
𝑑𝑙𝑛𝑃

𝑑𝑇
=

∆𝐻𝑣

𝑅𝑇2------------(13) 
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Equation (13) is known as Clausius – Clapeyron equation. 

 
If P1 and P2 are the vapour pressure at temperature T1 and T2 
respectively, then integrating equation (13) (assuming  ∆Hv to remain 

constant over the temperature range, we get, 

 𝑑𝑙𝑛𝑃 =
∆𝐻𝑣

𝑅
 

1

𝑇2
𝑑

𝑇2

𝑇1

𝑃2

𝑃1

𝑇 

ie .     𝑙𝑛
𝑃2

𝑃1
= −

∆𝐻𝑣

𝑅
 

1

𝑇2
−

1

𝑇1
  

ie .     𝑙𝑛
𝑃2

𝑃1
= +

∆𝐻𝑣

𝑅
 

1

𝑇1
−

1

𝑇2
  

𝐥𝐨𝐠
𝑷𝟐

𝑷𝟏
=

∆𝑯𝒗

𝟐. 𝟑𝟎𝟑𝑹
 
𝟏

𝑻𝟐
−

𝟏

𝑻𝟏
 − − − − − −(𝟏𝟒) 

Equation (14) is the integrated form of Claussius – Clopeyron equation. 

Applications: 

i) It help to calculate ∆𝐻𝑣 if P1 , P2 and T1 and T2 are known. 
 
ii) One can also calculate T2 if P1 , P2, T1 and ∆Hv are known. 
 

 Verification of Claussius Clapeyron equation  

 For a liquid – vapour equilibrium , Claussius – Clapeyron equation is, 
𝒅𝒍𝒏𝑷

𝒅𝑻
=

∆𝑯𝒗

𝑹𝑻𝟐
------------(1) 

Where ∆Hv is the molar heat of vapourization. 
 
 

 
 
 

On rearranging equation(1) and integrating it we get, 

 𝑑𝑙𝑛𝑃 =
∆𝐻𝑣

𝑅
 

1

𝑇2
𝑑𝑇 

𝑙𝑛𝑃 = −
∆𝐻𝑣

𝑅
+ 𝑐 − − − − − (2) 

Where ‘c’ is the constant of integration. 
 
Converting equation (2) to log10 we get, 

               

                        log P= −
∆𝐻𝑣

2.303𝑅𝑇
+ 𝑐′   or 

              

                        log P=
−𝐵

𝑇
+ 𝑐′   ------------------------(3) 

where B = 
∆𝐻𝑣

2.303𝑅𝑇
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When a graph of lop P v/s 1/T is plotted, a straight line is obtained 

with slope = – B. this verifies Claussius – Clapeyron equation. 

 

 Partial molal property of a system  

 A system is characterized by the following two properties. 

a) Extensive property : It is a property which depends upon the 

amount of matter present in the system eg. mass, volume 

b) Intensive property : It is a property which is independent of the 

amount of matter present in the system. Eg. pressure, temperature. 

 

Any change in the extensive property is brought about by change in 

temperature or pressure. For a closed or isolated system, the mass and 

composition of the system remains unchanged. However , for an open 

system, mass and composition of the system may vary. Therefore to 

define total extensive property of a system, the change in mass and 

composition of the constituents also contribute to a significant extent. 

Hence, G.N. Lewis introduced the concept of partial molal property for 

the study of open system. 

Partial molal property of a component in a system is defined as the 

change in magnitude of extensive property due to addition of the 

mole of that component to such a large quantity of the system 

that the added mole does not bring about any significant change in 

temperature, pressure and composition of the system. 

 

Consider an extensive property X of a system consisting of two 

component 1 and 2 . Let n1 and n2 be the number of moles of the 

components of the system. The property X is a function of temperature, 

pressure , n1 and n2. ie  

                                  X = f(T , P , n1 , n2) 

If a small change is made in temperature , pressure and no. of moles of 

the components, then the change in extensive property dX is given by, 
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dX =  
𝑑𝑋

𝑑𝑇
 
𝑃𝑛1𝑛2

𝑑𝑇 +  
𝑑𝑋

𝑑𝑃
 
𝑇𝑛1𝑛2

𝑑𝑃 +  
𝑑𝑋

𝑑𝑛1
 
𝑇𝑃𝑛2

𝑑𝑛1 +  
𝑑𝑋

𝑑𝑛2
 
𝑇𝑃𝑛1

𝑑𝑛2 ----------(1) 

 
At constant temperature and pressure dT = 0 and dP = 0 
 

Therefore dX =  
𝒅𝑿

𝒅𝒏𝟏
 
𝑻𝑷𝒏𝟐

𝒅𝒏𝟏 +  
𝒅𝑿

𝒅𝒏𝟐
 
𝑻𝑷𝒏𝟏

𝒅𝒏𝟐--------------------------------(2) 

 

The term 
𝑑𝑋

𝑑𝑛1
 , 

𝑑𝑋

𝑑𝑛2
 in equation (2) are referred to as partial molal 

quantities with reference to components 1 and 2 respectively. 
 

Representation of partial molal property  

𝑋1
   =  

𝑑𝑋

𝑑𝑛1
 
𝑇𝑃𝑛2

 

𝑋2
   =  

𝑑𝑋

𝑑𝑛2
 
𝑇𝑃𝑛1

 

For a system containing two components 

 

dX = 𝑋1
    dn1 + 𝑋2

    dn2 

 

for a system of ‘i’ constituents at const temperature and pressure, 

 

dX = 𝑋1
    dn1 + 𝑋2

    dn2 + -------------+ 𝑋 idni 

 

 Partial molal volume 

 Consider a binary solution obtained by mixing n1 moles of compound 1 

and n2 moles of compound 2. Since volume is an extensive property, its 

magnitude depends upon temperature, pressure and no. of moles of 

the components present in solution. 

ie. V = f(T , P , n1 , n2) 

If a change is made in temperature , pressure and no. of moles of the 

components of the solution , then the change in extreme property dV is 

given by, 

dV =  
𝑑𝑉

𝑑𝑇
 
𝑃𝑛1𝑛2

𝑑𝑇 +  
𝑑𝑉

𝑑𝑃
 
𝑇𝑛1𝑛2

𝑑𝑃 +  
𝑑𝑉

𝑑𝑛1
 
𝑇𝑃𝑛2

𝑑𝑛1 +  
𝑑𝑉

𝑑𝑛2
 
𝑇𝑃𝑛1

𝑑𝑛2 

 
At constant temperature and pressure dT = 0 and dP = 0 
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Therefore dV =  
𝑑𝑉

𝑑𝑛1
 
𝑇𝑃𝑛2

𝑑𝑛1 +  
𝑑𝑉

𝑑𝑛2
 
𝑇𝑃𝑛1

𝑑𝑛2 

 

The term  
𝑑𝑉

𝑑𝑛1
 
𝑇𝑃𝑛2

and     
𝑑𝑉

𝑑𝑛2
 
𝑇𝑃𝑛1

 are referred to as partial molal volume 

of  components 1 and 2 respectively. It is represented as  𝑉1
  and 𝑉2

   
respectively. 
 

Therefore, dV = 𝑉1
  dn1 + 𝑉2

  dn2 

 

For a system of ith components, 

dV = 𝑉1
  dn1 + 𝑉2

  dn2 + -------------+ 𝑉 idni 

Thus partial molal volume is defined as change in volume of the 

system at constant temperature and pressure when one mole of a 

compound is added to such a large volume of a solution that the 

added mole does not bring any change in the concentration of the 

solution. 

 Concept of Chemical potential. 

 The term chemical potential for a pure substance refers to a driving 

force which determines whether a substance will undergo a chemical 

reaction or not. It is also called partial molal free energy. For a pure 

substance, chemical potential is equal to free energy per mole. 

Free energy is an extensive property. For a system consisting of ‘i’ 

constituents, if n1, n2 , n3 ,……ni are the number of moles of the 

constituents 1 ,2 ,3 ,…..,i respectively, then the free energy G is given 

by             G = f(T , P , n1 , n2 , …….ni ) 

A small change in temperature , pressure and no. of moles brings a 

change in free energy, which is given by, 

dG =   
𝑑𝐺

𝑑𝑇
 
𝑃𝑛1𝑛2…𝑛𝑖

𝑑𝑇 +  
𝑑𝐺

𝑑𝑃
 
𝑇𝑛1𝑛2…𝑛 𝑖

𝑑𝑃 +  
𝑑𝐺

𝑑𝑛1
 
𝑇𝑃𝑛2…𝑛 𝑖

𝑑𝑛1+. . .  
𝑑𝐺

𝑑𝑛 𝑖
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

𝑑𝑛𝑖 

 
At constant temperature and pressure dT = 0 and dP = 0 
 

Therefore 

 dG =  
𝑑𝐺

𝑑𝑛1
 
𝑇𝑃𝑛2 ,𝑛3…𝑛𝑖

𝑑𝑛1 +  
𝑑𝐺

𝑑𝑛2
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

𝑑𝑛2 +  
𝑑𝐺

𝑑𝑛𝑖
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

𝑑𝑛𝑖….(1) 

The term,  
𝑑𝐺

𝑑𝑛𝑖
 𝑑𝑛𝑖 refers to partial chemical potential for ith component 
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and is represented as 𝐺𝑖  and 𝜇𝑖  . 
 

Therefore , dG = 𝐺1
    dn1 + 𝐺2

    dn2 + -------------+ 𝐺 idni or 

               

                 dG = 𝜇1    dn1 + 𝜇2    dn2 + -------------+ 𝜇 idni ………………(2) 

Thus chemical potential of the component may be defined as the 

change in Gibbs free energy of a system that results when one 

mole of the component ‘i’ is added to a large quantity of the 

system at constant temperature and pressure without bringing any 

change in the composition of the system. 

If the system has definite composition, then equation (2) on integration 
gives, 

              G = μ1n1 + μ2n2 + ………+μini ------------(4) 

For a system of only one component, equation (4) becomes, 

                              G = μ1n1 

If n1 = 1 mole, then μ1 = G 

Thus for one mole of the constituent, chemical potential is same as 
Gibb’s free energy. 

 

  Gibbs-Duhem equation. 

 Consider a system consisting of ‘i’ constituents. Let n1, n2 , n3 ,……ni 

are the number of moles of the component  1 ,2 ,3 ,…..,i   respectively. 

If G is the free energy of the system then G, being an extensive 

property, will be a function of temperature ,and no. of moles of the 

various constituents of the system. 

ie  G = f(T , P , n1 , n2 , …….ni ) 

 
By changing temperature , pressure and no. of moles of the 
constituents, the change in free energy, which is given by, 

dG =  
𝒅𝑮

𝒅𝑻
 
𝑷𝒏𝟏𝒏𝟐…𝒏𝒊

𝒅𝑻 +  
𝒅𝑮

𝒅𝑷
 
𝑻𝒏𝟏𝒏𝟐…𝒏𝒊

𝒅𝑷 +  
𝒅𝑮

𝒅𝒏𝟏
 
𝑻𝑷𝒏𝟐…𝒏𝒊

𝒅𝒏𝟏 +  
𝒅𝑮

𝒅𝒏𝟐
 
𝑻𝑷𝒏𝟏,𝒏𝟐…𝒏𝒊

𝒅𝒏𝟐 +

⋯… .  
𝒅𝑮

𝒅𝒏𝒊
 
𝑻𝑷𝒏𝟏,𝒏𝟐…𝒏𝒊

𝒅𝒏𝒊----------------------(1) 

At constant temperature and pressure dT = 0 and dP = 0 
 

∴ dG =  
𝑑𝐺

𝑑𝑛1
 
𝑇𝑃𝑛2 ,𝑛3…𝑛𝑖

𝑑𝑛1 +  
𝑑𝐺

𝑑𝑛2
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

𝑑𝑛2 + ⋯… 
𝑑𝐺

𝑑𝑛𝑖
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

𝑑𝑛𝑖---(2) 
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But  
𝑑𝐺

𝑑𝑛1
 =  𝐺1

   = 𝜇1  = chemical potential of component 1 

          
𝑑𝐺

𝑑𝑛2
 =  𝐺2

   = 𝜇2  = chemical potential of component 2 

Hence equation (2) can be written as, 
 

dG = μ1dn1 + μ2dn2 + ………+μidni ------------(3) 

 

Integrating equation (3) we get, 
 

(G)T,P  = μ1n1 + μ2n2 + ………+μini ------------(4) 

 
Differentiating equation (4) we get, 
 

(dG)T,P = μ1dn1 + n1dμ1 + μ2dn2 +n2dμ2 ………+μidni + nidμi 
            = (μ1dn1 + μ2dn2 + ………+μidni ) + (n1dμ1 +n2dμ2 +……..+  

                nidμi)-------(5) 
 
Substituting equation (3) in equation (5) we get, 

 
dG = dG + (n1dμ1 +n2dμ2 +……..+ nidμi) 

 
ie  n1dμ1 +n2dμ2 +……..+ nidμi = 0……………………….(6) 
 

or  𝑛𝑖𝑑𝜇𝑖 = 0…………………….(7) 
 
Equation (7) is known as Gibbs-Duhem equation. 

 
For a two component system, equation (6) can be written as  
   

                            n1dμ1 +n2dμ2 = 0 
 

Therefore dμ1 = −
𝑛2

𝑛1
𝑑𝜇2 ------------------(8) 

 
Equation (8) is another form of Gibbs-Duhen equation for a binary 

mixture. This equation indicates that a change in chemical potential of 
one component causes a corresponding change in chemical potential of 
another component. 

 

 Variation of chemical potential of a substance change with change 

in temperature and pressure 

Ans. The chemical potential of  the ith  constituent of a system is given by, 

     𝜇𝑖 =  
𝑑𝐺

𝑑𝑛𝑖
 
𝑇𝑃𝑛1 ,𝑛2…𝑛𝑖

= 𝐺i
 …… . (1) 
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Variation of chemical potential with temperature: 

Differentiating equation (1) with respect to temperature at constant 
pressure we get, 

 
𝑑𝜇𝑖
𝑑𝑇

 
𝑃,𝑛𝑖

=
𝑑

𝑑𝑡
 
𝑑𝐺

𝑑𝑛𝑖
 
𝑃,𝑛𝑖

=  
𝑑2

𝑑𝑇𝑑𝑛𝑖
 
𝑃,𝑛𝑖

…… .  2  

 
We know that dG = Vdp – SdT 
 

At constant pressure , dP = 0 
 

Therefore. dG = – S.dT or  
𝒅𝑮

𝒅𝑻
 
𝑷

= −𝑺                …………… . (3) 

 
Differentiating equation (3) w.r.t. ni at constant T,P and ni we get, 

𝒅

𝒅𝒏𝐢
 
𝒅𝑮

𝒅𝑻
 
𝑷,𝒏𝒊

= − 
𝒅𝑺

𝒅𝒏𝒊
 
𝑻,𝑷,𝒏𝒊

 

ie.    
𝒅𝟐𝑮

𝒅𝒏𝒊𝒅𝑻
 
𝑷,𝒏𝒊

= − 
𝒅𝑺

𝒅𝒏𝒊
 
𝑻,𝑷,𝒏𝒊

= −𝑺𝐢 …… . (𝟒) ,  

                             where 𝑆i
  = partial molal entropy 

Comparing equation (2) and equation (4) we get, 

 
𝒅𝝁𝒊
𝒅𝑻

 
𝑷,𝒏𝒊

= −𝑺𝐢 ……… . (5) 

Thus the rate of chemical potential of the ith constituent with 
temperature at constant pressure is equal to decrease in partial 

molal entropy of ith constituent. 

Variation of chemical potential with respect to pressure: 

Differentiating equation (1) with respect to pressure at constant 

temperature we get, 

 
𝑑𝜇𝑖
𝑑𝑃

 
𝑇,𝑛𝑖

=
𝑑

𝑑𝑡
 
𝑑𝐺

𝑑𝑛𝑖
 
𝑇,𝑛𝑖

=  
𝑑2

𝑑𝑃. 𝑑𝑛𝑖
 
𝑇,𝑛𝑖

…… .  6  

We know that dG = Vdp – SdT 

 
At constant temperature , dT = 0 

 
Therefore, dG = VdP 

ie.  
𝑑𝐺

𝑑𝑃
 
𝑇

= 𝑉…………… . (7) 

 

Differentiating equation (7) w.r.t. ni at constant T,P and ni we get, 



17 
 

𝒅

𝒅𝒏𝐢
 
𝒅𝑮

𝒅𝑷
 
𝑻,𝑷,𝒏𝒊

= − 
𝒅𝑽

𝒅𝒏𝒊
 
𝑻,𝑷,𝒏𝒊

 

ie.   
𝒅𝟐𝑮

𝒅𝒏𝒊𝒅𝑷
 
𝑻,𝑷,𝒏𝒊

= − 
𝒅𝑽

𝒅𝒏𝒊
 
𝑻,𝑷,𝒏𝒊

= 𝑽𝐢 …… . (𝟖) ,  

where 𝑉i
  = partial molal volume of ith component. 

 

 
Comparing equation (6) and equation (8) we get, 

 
𝒅𝝁𝒊
𝒅𝑷

 
𝑻,𝒏𝒊

= 𝑽𝐢 ……… . (5) 

ie. the rate of change of chemical potential of the ith constituent 
with pressure at constant temperature is equal to the partial molal 
volume of the ith constituent. 

 

 

 


