

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce AUTONOMOUS

Mithagar Road, Mulund East, Mumbai-400081, India College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, e mail :vazecollege@gmail.com

Syllabus for F.Y. B. Sc. Programme

Chemistry

Syllabus as per Choice Based Credit System

(June 2020 Onwards)

Submitted by

Department of Chemistry Vinayak Ganesh Vaze College of Arts, Science and Commerce Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: <u>vazecollege@gmail.com</u> Website : <u>www.vazecollege.net</u>

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (AUTONOMOUS)

Syllabus as per Choice Based Credit System

1.	Name of the Programme	F. Y. B. Sc. Chemistry	y: CBCS		
1	The F. Y. B. Sc. course in Chemis two semesters, to be known as Se of TWO core courses and practic	mester I and Semester II. E			
2.	Course Code	SCH101	SCH201		
		SCH102	SCH202		
		General Chemistry	: Paper - I		
3.	Course Title	General Chemistry	: Paper - II		
4.	Semester wise Course Contents	Copy of the detailed sylla	bus Enclosed		
5.	References and additional references	Enclosed in the Syllabus			
6.	No. of Credits per Semester	06			
7.	No. of lectures per Unit	15			
8.	No. of lectures per week	06			
9.	No. of Tutorials per week				
			0 marks		
		(4 Questions of 15 marks each)			
10.	Scheme of Examination	Internal Assessment : 40 marks			
		Class Test : 15 marks			
		Project/ Assignment : 15 marks			
		Class Participation : 10) marks		
11.	Special notes, if any	No			
12.	Eligibility, if any	As laid down in the Colle website	ege Admission brochure /		
13.	Fee Structure	As per College Fee Struc	ture specifications		
14.	Special Ordinances /	No			
	Resolutions, if any				

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce, (AUTONOMOUS)

Programme Structure and Course Credit Scheme :

Programme : F. Y. B. Sc.	Semester: I	Credits	Semester: II	Credits
	Course Code	2.0	Course Code	2.0
Course 1 : General Chemistry	SCH301		SCH401	
Course 2 : General Chemistry	Course Code	2.0	Course Code	2.0
	SCH302		SCH402	
Course 3 : Chemistry Practical	Course Code	2.0	Course Code	2.0
	SCHP1		SCHP2	

* <u>Semester-wise Details of Chemistry Course</u>

Course L P C CIA-1 CIA-2 CIA-3 Theory Practical Course 1 03 03 2.0 15 15 10 60 Course 2 03 03 2.0 15 15 10 60 Course 3, Pracs. 2.0	Teaching Scheme (Hrs/Week)				Assessm	uous Inte nent (CIA marks		End Semester Examination Marks		Total
Course 2 03 03 2.0 15 15 10 60	Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
	Course 1	03	03	2.0	15	15	10	60		100
Course 3, Pracs 2.0	Course 2	03	03	2.0	15	15	10	60		100
	Course 3, Pracs.			2.0						100
Total credits of the course = $04 + 02 = 06$	Total credits of t	the co	ourse =	04 + 02	2 = 06					

Teaching Scheme (Hrs/Week)				Assessr	ntinuous Internal sessment (CIA) 40 marks		End Semester Examination Marks		Total
Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
Course 1	03	03	2.0	15	15	10	60		100
Course 2	03	03	2.0	15	15	10	60		100
Course 3, Pracs.			2.0					100	100
Total credits of	the co	urse =	04 + 02	2 = 06					

- ▶ L Lectures
- ≻ T Tutorials
- ≻ P Practical
- ≻ C Credits

- 1. To infuse in the learner a spirit of inquiry into the fundamental aspects of the various core areas of Chemistry.
- 2. To make the learner capable of solving problems in the various units of this course.
- 3. To impart various skills of handling chemicals, reagents, apparatus, instruments and the care and safety aspects involved in such handling.

Course Content - Semester I

Course Code	Unit	Topics	Credits	L/Week
	Ι	Chemical Thermodynamics,		01
		Stoichiometry - I	02	
SCH101	II	Atomic Structure		01
SCHIUI		Periodic Table and Periodicity		
	III	Basics of Organic Chemistry		01
	Ι	Chemical Kinetics, Liquid State		01
SCH102	II	Comparative Chemistry of Main group	02	01
		Elements.		
	III	Stereochemistry - I		01
SCHP1		Chemistry Practical - I	02	06

	F. Y. B. Sc. CHE	MISTRY : Choice Based	l Credit System			
		Semester I				
		PAPER : I				
Course	Name: General Chemistry	(45 lectures)	Course Code SC	H101		
Periods p	er week (1 period 50 minutes)		03			
Credits			02			
			Hours	Marks		
Evaluati	ion System	Theory Examination	2.0	60		
		Theory Internal		40		
				No. of lectures		
Unit I	1.1 Chemical Thermo	dynamics		10		
	 1.1.2 First law of thermodenergy (U), statements capacities, sign conventions, sis sintervented, sign conventions, sign conventio	zeroth law of thermodynamics ynamics: Concept of heat (q), nt of first law, enthalpy, relation ventions, calculations of heat (and enthalpy (H) (Numericals feats of reactions, standard sta- ules, enthalpy of combustion a energy, bond dissociation encoder ochemical data, Kirchhoff's ec	work (w), internal on between heat (q), work (w), s expected) tes, enthalpy of and it applications, ergy and resonance			
	1.2 <u>Stoichiometry - I</u>					
	formality, mole fract	vogadro's constant. ation of solutions: Normality, p ons, weight ratio, volume rati moles, milliequivalents (Num	o, weight to volume			
Unit II	2.1 Atomic structure:			10		
	Limitations of Ruther and atomic spectrum of derivations of the mat 2.1.2 Hydrogenic atoms: 1. Simple princip 2. Atomic orbitals	s of the atomic structure: Ruth rford's atomic model, Bohr's to of hydrogen atom. Structure o hematical equations are requi- les quantum mechanics: s c energy levels. ii) Shells, sub	theory, its limitations f hydrogen atom. (No ired.			
	iii) Electron sp		apes of orbitals			

	 Many Electron Atoms Penetration and shielding Effective nuclear charge Aufbau Principle Hund's rule of maximum multiplicity Pauli's exclusion principles. Periodic Table and periodicity Periodic Table and periodic table: Classification of elements as main group, transition and inner transition elements; Periodicity in the following properties: Atomic and ionic size: electron gain enthalpy: ionization enthalpy, effective nuclear charge (Slater's rule); Electronegativity: Pauling, Mulliken and Alfred Rochow electronegativities (Numerical problems expected) 	05
Unit III	Basics of Organic Chemistry	
	3.1 Classification and Nomenclature of Organic Compounds:	03
	3.1.1 Recapitulation of basic rules of IUPAC nomenclature.	
	 3.1.2 Nomenclature of mono and bi-functional aliphatic compounds on the basis of priority order of the following classes of compounds: alkanes, alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones, carboxylic acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), nitro compounds, nitriles and amines; including their cyclic analogues. 3.2 Bonding and Structure of organic compounds: 	03
	3.2.1 Hybridization: sp ³ , sp ² , sp hybridization of carbon and nitrogen; sp ³ and	
	sp ² hybridizations of oxygen in Organic compounds.	
	3.2.2 Overlap of atomic orbitals: Overlaps of atomic orbitals to form sigma and	
	pi bonds, shapes of organic molecules.	
	3.2.3 Influence of hybridization on bond properties	06
	3.3 Fundamentals of organic reaction mechanism:	
	3.3.1 Electronic Effects: Inductive, electromeric, resonance and Mesomeric	
	effects; Dipole moment; hydrogen bonding and their applications.	
	3.3.2 Organic acids and bases and the factors affecting their relative strengths.	
	3.3.3 Bond fission: Homolytic and Heterolytic fission with suitable examples.;	
	Electrophiles and Nucleophiles; electrophilicity and acidity;	
	Nucleophilicity and basicity;	
	3.3.4 Intermediates: Carbocations, Carbanions and Free radicals. structure	
	and factors affecting stability	

3.4 Classification of organic reactions based on mechanism:	03
3.4.1 Polar & Non-polar mechanism; use of curved arrows in depicting Mechanism.	
3.4.2 Polar Mechanism: Electrophilic addition; nucleophilic addition; electrophilic substitution; nucleophilic substitution (one example of each type, no Mechanism)	
3.4.3 Non polar mechanism: Free radical addition to alkenes; free radical substitution (one example of each type, no Mechanism)	
3.4.4 Elimination; Redox; Concerted /Pericyclic (one example of each type, no Mechanism)	

On studying the syllabi ,the learner will be able to

- Define the terms system, surroundings, open system, closed system, isolated system ,internal energy, enthalpy
- Distinguish between state function and path function
- ➤ State the zeroth law and first law of thermodynamics
- > Formulate the relationship between internal energy and enthalpy
- > Elaborate the concept of thermochemistry and discuss its applications
- \blacktriangleright Explain the concept of bond enthalpy , bond dissociation enthalpy and resonance energy
- > Solve numericals based on Kirchoff's equation, bond enthalpies and heat of reaction.
- > Outline the importance of mole concept and Avogadro's constant
- Explain the different units of concentration of the solution and solve numericals based on these units.
- ➤ Recall J.J. Thomson's atomic model.
- > Describe Rutherford's atomic model and Bohr's atomic model.
- > Illustrate all the quantum numbers and outline the shapes of orbitals.
- > Explain hydrogenic atoms and system of many electron atoms.
- > Recollect Doberniers law of triads and Newlands law of octaves.
- > Illustrate Mendeleev's periodic table and Mosley's periodic table.
- > Define Ionization potential, Electronegativity and electron affinity.
- > Discuss electronegativity on Pauling scale.
- > Draw the structures of organic compounds
- > Identify the functional groups in organic compounds
- > Write the IUPAC name of a given organic compound
- > Predict the hybridization of different atoms in given organic compound
- > Explain the effect of inductive and resonance effects on the properties of organic compounds
- Distinguish between heterolytic and homolytic fission
- Distinguish between polar and non polar reactions
- > Identify intermediates and the factors which stabilise them
- Classify the reactions based on the mechanism

<u>Reference Books :</u>

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press (2014).
- 2. Ball D.W., Physical Chemistry, Thomson Press, India (2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa (2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson (2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi (2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill (2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series (2006).
- 10. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan(2000).
- 13. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 14. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 16. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
- 17. Rodger, G.E. Inorganic and Solid-State Chemistry, Cengage Learning India Edition, 2002.
- Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 19. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd.(Pearson Education).
- 20. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 21. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 22. Kalsi, P.S.StereochemistryConformationandMechanism,NewAgeInternational, 2005.
- 23. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

	F. Y. B. SC. CHE	MISTRY : Choice Based	Creait System	
		Semester I		
		PAPER : II		
Course	Name: General Chemistry	(45 lectures)	Course Code SCH	H102
Periods p	er week (1 period 50 minutes)		03	
Credits			02	
			Hours	Marks
Evaluat	ion System	Theory Examination	2.0	60
		Theory Internal		40
				No. of lectures
Unit I Unit II	 molecularity of react reactions (with equal expected). 1.1.2 Determination of orde (b) Graphical method (Numericals expected) 1.2 Liquid State 1.2.1 Surface tension: Int tension by drop numbers 1.2.2 Viscosity: Introducti viscosity, reduced vis viscometer (Numerica) 1.2.3 Refractive index: Introducti determination of refrace expected). 1.2.4 Liquid crystals: Intro- phases (Nematic, sme crystals. Concept of con- 	roduction, methods of determi ber method (Numericals expect on, coefficient of viscosity, re scosity, determination of visco	f first and second order ints) (Numericals n method od (d) Half time method ination of surface cted). lative viscosity, specific osity by Ostwald d polarizability, ometer (Numericals ructure of thermotropic applications of liquid cation	08
	anomalous behaviour o diagonal relationship. 2.1.2 Comparative study of and II elements. Some NaCl, NaOH, CaO, C		otropy, catenation hydrides of Group I CO3. Na2 CO3,	
		exy acids Of C, N ,S With Res	pect 10	
	Environmental aspects	<u>.</u>		

Unit III	 <u>Stereochemistry I</u> 3.1 Different types of isomerism: position ,chain; functional group; stereoisomer; optical isomers; geometrical isomers. 	15
	3.2 Fischer Projection , Newman and Sawhorse Projection formulae and their interconversions.	
	3.3 Optical Isomerism : Asymmetric carbon; Optical Activity, Specific Rotation, Chirality /Asymmetry, stereogenic centre ; Enantiomers, Molecules with two similar and dissimilar chiral-centres, Distereoisomers, meso structures, racemic mixture and resolution (methods of resolution not expected). Relative and absolute configuration: D/L and R/S designations.	
	3.4 Geometrical isomerism in alkene and cycloalkanes: cis–trans and syn-anti isomerism E/Z notations with C.I.P rules.	
	3.5 Conformation analysis of alkanes (ethane, propane and n-butane); Relative stability with energy diagrams.	

At the end of this module, the learner should be able to

- > Distinguish between order and molecularity of the reaction
- > Derive first and second order integrated rate equation
- > Evaluate surface tension and viscosity of given liquids by the methods given
- Classify liquid systems and write their uses.
- > Correlate chemical properties of elements with their periodic properties.
- Discuss environmental implication, health hazards due to oxides of carbon, nitrogen and sulphur and the control measures.
- Recognize and draw constitutional isomers, stereoisomers, including enantiomers and diasteromers, racemic mixture and meso compounds
- Define stereosiomers and classify isomers
- > Interconvert molecules from Fischer to Sawhorse to Newman projection
- > Determine configurations of simple chiral molecules
- Distinguish between conformations and configuration
- > Draw the different conformations of ethane, propane and butane and compare their stability

Reference Books :

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press(2014).
- 2. Ball D.W., Physical Chemistry, Thomson Press, India(2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa(2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson(2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi(2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill(2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series(2006).
- 10. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).
- 13. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970
- 15. Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 16. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
- 17. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.
- Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 19. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 20. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (PearsonEducation).
- 21. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London,1994.
- 22. Kalsi, P. S. Stereochemistry Conformation and Mechanism, NewAgeInternational, 2005.
- 23. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7thEd. Cengage Learning India Edition, 2013.

PRACTICALS SEMESTER : I

Paper-I &II

COURSE CODE: SCHP1

CREDITS: 02

Orientation of students to Laboratory Safety Practices

Unit I: Physical Chemistry

- **1.** To prepare 0.1 N succinic acid and standardize the NaOH of two different concentrations.
- 2. To determine the rate constant for the hydrolysis of ester using HCl as catalyst.
- **3.** To determine enthalpy of dissolution of salt (like KNO₃)

Unit II: Inorganic Chemistry

- 1. Commercial analysis of (any two)
 - a) Mineral acid
 - b) Organic acid
 - c) Salt of weak acid and strong base.
- 2. Titration using double indicator: Analysis of solution of Na₂CO₃ and NaHCO₃
- 3. Gravimetric analysis
 - a) To determine the percent purity of sample of BaSO₄ containing NH₄Cl
 - b) To determine the percent purity of ZnO containing ZnCO₃.

Unit III: Organic Chemistry

1. Purification of any two organic compounds by recrystallization selecting suitable solvent. (**Provide 1 g.**)

Learners are expected to report

- a) Solvent for recrystallization.
- b) Mass and the melting points of purified compound.

(Learners should calibrate thermometer before determining melting point.)

- 2. Chromatography (Anyone)
 - a) Separation of a mixture of two sugars by ascending paper chromatography
 - b) Separation of a mixture of o- and p-nitrophenols by using thin layer chromatography (TLC)

Reference Books :

Unit I: Physical Chemistry

- Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi(2011).
- Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8th Ed., McGraw-Hill, New York (2003).
- Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rdEd.
 W.H. Freeman and Co., New York (2003).
- Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001).

Unit II: Inorganic Chemistry

1. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* 6thEd., Pearson, 2009.

Unit III: Organic Chemistry

- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education(2009)
- Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson(2012)
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. &Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996

F. Y. B. Sc. CHEMISTRY : Choice Based Credit System (CBCS)

SEMESTER: II

Course content - Semester II

Course Code	Unit	Topics	Credits	L/Week
6.01120.1	Ι	 Gaseous State Chemical Equilibria and Thermodynamic Parameters 	02	01
SCH201	II	Concept of Qualitative Analysis:Acid Base Theories:		01
	III	• Alkanes, Alkenes, Alkynes		01
SCH202	Ι	Ionic EquilibriaMolecular Spectroscopy	02	01
	II	Chemical Bond and Reactivity.Oxidation- Reduction Chemistry.		01
	III	PolymersAromatic Hydrocarbons		01
SCHP2		Chemistry Practical II	02	06

		Semester II				
		PAPER : I				
Course I	Name: General Chemistry	(45 lectures)	Course Code SC	CH201		
Periods p	er week (1 period 50 minutes)		03			
Credits			02			
Evaluati	on System		Hours	Marks		
	on System	Theory Examination	2.0	60		
		Theory Internal		40 No. of		
				lectures		
Unit I	1.1 Gaseous State			08		
	compressibility fact 1.1.2 Deviation from ideal Van der Waals equa discussion. inversion	ative discussion), ideal gases, n or, Boyle's temperature (Nume l gas laws, reasons for deviation ation of state, Joule-Thomson e n temperature. (Numerical exp n, critical constants of a gas in	erical expected). n from ideal gas laws, effect: qualitative pected).			
	1.2 Chemical Equilibria and Thermodynamic Parameters					
		ersible reactions, law of mass a um constant, (Kc and Kp), rela	-			
	1.2.2 Le Chatelier's principle, factors affecting chemical equilibrium (Numerical expected)					
	free energy, spontar	law of thermodynamics, conce neity and physical significance ivation of equilibrium constant	of free energy,			
Unit II	 in qualitative analysis iodide, potassium dicl reagents). 2.1.2 Precipitation equilibri oxidation states, buffered 	valuates, Role of papers impres (with reference to papers imp hromate, lead acetate, dimethy ia, effects of common ions, und er action, solubility product, co compounds.(Balanced chemic	regnated with starch lglyoxime and oxine common ions, omplexing agents on	08		

	2.2 Acid Base Theories		
	2.2.1 Arrhenius, Lowry – Bronsted, Lewis, Solvent- Solute concept of acids		
	and bases, Hard and soft acid and bases. Application of HSAB.		
	2.2.2 Application of acid base chemistry in: Understanding organic reactions		
	like Friedel Craft's (acylation / alkylation) reactions.		
	2.2.3 Volumetric analysis with special reference to calculation of titration		
	curve involving strong acid and strong base.		
Unit III	3.1 Chemistry of alkanes	03	
	211 Ermadian of allower Wheele Desidian Wheele Ethic Desidian		
	3.1.1 Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions,		
	3.1.2 Free radical Halogenation (mechanism expected) including relative reactivity and selectivity.		
	3.2 Chemistry of alkenes	09	
	Formation of alkenes by elimination reactions	07	
	3.2.2 Mechanism of E1, E2, E1cb reactions. Saytzeff and Hofmann eliminations.		
	3.2.3 Reactions of alkenes: Mechanism of Polar and Non polar addition, allylic and benzylic bromination using N-Bromo succinimide (no mechanism)		
	3.2.4 Mechanism of oxymercuration - demercuration, hydroboration-oxidation 3.2.5 Ozonolysis, reduction; hydroxylation		
	3.2.6 Dienes: classification as isolated, conjugated and cumulenes; 1, 2 and		
	1, 4- addition reactions in conjugated dienes (with mechanism) and, Diels-Alder reaction (No mechanism).		
	3.3 Chemistry of Alkynes	03	
	3.3.1 Formation of alkynes	~~	
	3.3.2 Reactions of alkynes: Acidity, Electrophilic addition reactions.		
	Hydration of alkynes, Alkylation of terminal alkynes.		

At the end of this module, the learner should be able to

- > Explain reasons for deviation of gases from ideal behaviour
- Derive Van der Waal's equation of state
- \succ Relate K_p with Kc
- > Interpret concepts of entropy, free energy and spontaneity
- > Explain second law of thermodynamics in terms of entropy
- > Elaborate Le Chatelier's principle and its application
- > Predict the spontaneity of a process in terms of Gibbs free energy
- Discuss the critical phenomenon and relate the critical constants with van der waal's constants.
- > Solve numerical based on concept of chemical equilibrium
- Identify various types of qualitative analysis

- > Apply reagent paper for the identification of ions.
- > Describe ionic product and solubility product.
- > Calculate the solubility product and ionic product.
- > Identify common ion and uncommon ion effect.
- > Explain the Arrhenius, Lowry Bronsted and Lewis concept of acids and bases.
- Define HSAB concept.
- > Identify Hard, Border line, Soft acids and bases.
- > Apply HSAB concept to explain stability of compounds.
- Summarize the different methods for the synthesis of alkanes, alkenes, dienes and alkynes
- > Predict the product of organic reactions involving alkanes, alkenes and alkynes as substrates.
- > Design synthesis of simple saturated and unsaturated hydrocarbons
- > Write mechanisms for simple organic reactions of hydrocarbons.

Reference Books :

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press(2014).
- 2. Ball D.W., Physical Chemistry, Thomson Press, India(2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa(2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson(2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi(2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill(2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series(2006).
- 10. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).
- 13. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 15. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.
- 16. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.
- 17. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 18. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 19. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (PearsonEducation).
- 20. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 21. Kalsi, P. S. Stereochemistry Conformation and Mechanism, NewAgeInternational, 2005.
- 22. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

	F. Y. B. Sc. CHEM	MISTRY : Choice Based	Credit System	
		Semester II		
		PAPER : II		
Course Name:General Chemistry (45 lectures)Course Code SC				H202
Periods per week (1 period 50 minutes)03Credits02				
Fyaluati	ation System Hours		Marks	
Evaluation System		Theory Examination	2.0	60
		Theory Internal		40 No. of
				lectures
Unit I	1.1 Ionic Equilibria			07
	-	l weak electrolytes, degree of onization	ionization, factors	
	and bases, pH scale,	nd ionic product of water, ion common ion effect, dissociat (exact treatment for monopro	ion constants of mono-	
	1.1.3 Buffers: Introduction, types of buffers, derivation of Henderson equation for acidic and basic buffers, buffer action, buffer capacity (Numerical expected)			
	equation, interaction 1.2.2 Absorption, emission	Copy ation, electromagnetic spectru of electromagnetic radiation a, scattering, fluorescence, elec , Beer-Lambert's law (Num	with matter: ctronic, vibrational and	04
		· · · · · ·	1 /	
	1.3 Solid State Chemistry1.3.1 Types of solids, crystal lattice, lattice points, unit cell, space lattice			04
	and lattice plane.			
		bhy: Law of constancy of inte f rational indices (Numerical	•	
Unit II	2.0 Chemical Bond and	Reactivity		07
	 2.1.1 Types of Chemical box 2.1.2 Fajan's rule, 2.1.3 Lewis electron dot str 2.1.4 Sidgwick - Powell Th 2.1.5 VSEPR theory for AE Limitations of VSEPF 	ond. Comparison between Ion ructure leory, B_n with and without Lone pair R theory		
	2.1.6 Isoelectronic principle	e		

	2.2 Oxidation- Reduction Chemistry	08		
	2.2.1 Reduction potentials,			
	2.2.2 Balancing redox equations			
	2.2.3 Latimer and Frost diagram,			
	2.2.4 Application of redox chemistry:			
	2.2.5 Extraction of elements (example: isolation of copper by auto reduction)			
	2.2.6 Redox reagents in volumetric analysis: Iodine, KMnO₄, Titration Curves Fe (II) against Ce (IV), Fe (II) against KMnO₄			
Unit III	 3.1 Polymers 3.1.1 Introduction: Definition of monomers, polymers, homopolymers, copolymers, graft polymer; block polymer; thermoplastic and thermosetting resins, natural and synthetic polymers. 3.1.2 Additionpolymers; a) polyethylene (b) polypropylene (c) PVC (d) polystyrene (e) polyacrylonitrile (f) polyvinyl Alcohol (g) Teflon. 	06		
	3.1.3 Condensation polymerization : (a) Polyesters (b) polyamides (c) polyurethanes (d) phenol formaldehyde resin (e) epoxy resin (f) polycarbonates and their uses.			
	3.1.4 Stereochemistry of polymers: Tacticity of polymers			
	3.1.5 Biodegradable polymers and their uses			
	3.1.6 Additives to polymers: Plasticizers, stabilizers and fillers.(The students are expected to identify monomers in a given polymer and draw the structure of a polymer from a given set of monomers).			
	3.2 Aromatic Hydrocarbons			
	3.2.1 Aromaticity :Huckel's rule of aromaticity ; benzenoid and non benzenoid	09		
	aromatic compounds ; heterocyclic compounds with suitable examples			
	3.2.2 Antiaromatic and non aromatic compounds with suitable examples			
	3.2.3 General mechanism of electrophilic aromatic substitution: halogenation, nitration, sulfonation and Friedel Craft alkylation /acylation with their mechanism.			
	3.2.4 Activating / deactivating effects and orienting effects in substituted benzenes			
	Note: Synthesis of simple substituted aromatic compounds based on orienting and activating/deactivating effects is expected)			

At the end of this module, the learner should be able to

- > Distinguish between strong and weak electrolytes, recognize pH scale
- Differentiate between types of buffer
- > Derive Henderson equation for acidic and basic buffers
- > Distinguish between electronic vibrational and rotational transition
- > Illustrate unit cell, space lattice and elements of symmetry
- Construct Latimer and Frost diagram and determine the relative stabilities of the various oxidation states.
- > Discuss the various factors which govern the structure of the molecules.
- Define monomers, polymers, copolymers, resins and classify polymers as random, graft or block co polymers.
- Distinguish between addition and condensation polymers and identify the starting monomer for a given polymer'
- > Draw the structure of the polymer derived from a given monomer
- Define tacticity of polymers
- > Identify benzenoid ,non-benzenoid aromatic, anti-aromatic and non-aromatic compounds
- > Explain electrophilic aromatic substitution reactions and their mechanism
- Predict the reactivity and outcome of electrophilic aromatic substitution reactions in substituted benzene
- Design synthesis of multifunctional aryl compounds based on the orienting effects of substituents.

Reference Books :

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press(2014).
- 2. Ball D.W., Physical Chemistry, Thomson Press, India(2007).
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa(2004).
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson(2013).
- 6. Peter A. and Paula J. de., Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi(2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill(2010).
- 9. Metz C.R., 2000 Solved Problems in Chemistry, Schaum Series(2006).
- 10. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP(2009).
- 11. Banwell C.N., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill (1994).
- 12. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).
- 13. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014.
- 15. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.

- 16. Rodger, G.E. Inorganic and Solid State Chemistry, Cengage Learning India Edition, 2002.
- 17. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 18. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 19. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (PearsonEducation).
- 20. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.
- 21. Kalsi, P. S. Stereochemistry Conformation and Mechanism, NewAgeInternational, 2005.
- 22. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

PRACTICALS

SEMESTER : II

Unit I: Physical Chemistry

- 1. To determine the rate constant for the saponification reaction between ethyl acetate and NaOH
- 2. To determine dissociation constant of weak acid (Ka)using Henderson's equation and the method of incomplete titration pHmetrically.
- 3. To verify Beer-Lambert's law, using KMnO₄ solution by colorimetric method.
- 4. To standardize commercial sample of HCl using borax and to write material safety data of the chemicals involved.

Unit II: Inorganic Chemistry

1. Qualitative analysis: (at least 4 mixtures to be analyzed)

Semi-micro inorganic qualitative analysis of a sample containing two cations and two anions.

Cations (from amongst):

Pb²⁺, **Ba**²⁺, **Ca**²⁺, **Sr**²⁺, **Cu**²⁺, **Cd**²⁺, **Fe**²⁺, **Ni**²⁺, **Mn**²⁺, **Mg**²⁺, **Al**³⁺, **Cr**³⁺, **K**⁺, **NH**⁴⁺ Anions (From amongst):

CO3²⁻, S²⁻, SO ²⁻, ³NO2⁻, NO3⁻, Cl⁻, Br⁻, I⁻, SO4²⁻, PO4³⁻

(Scheme of analysis should avoid use of sulphide ion in any form for precipitation / separation of cations.)

2. Redox Titration:

To estimate iron in the given Ferrous Ammonium sulphate solution by titrating against standard KMnO₄ solution.

Unit III: Organic Chemistry

Characterization of organic compound containing C, H, (O), N, S, X elements. (minimum 6 compounds)

Reference Books :

Unit I: Physical Chemistry

- 1. Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi(2011).
- 2. Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8th Ed., McGraw-Hill, New York (2003).
- Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rdEd. W. H. Freeman and Co., New York (2003).
- 4. Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001).

Unit II: Inorganic Chemistry

5. Mendham, J., A. I. Vogel's *Quantitative Chemical Analysis* 6thEd., Pearson, 2009.

Unit III: Organic Chemistry

- 6. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education(2009)
- Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson(2012)
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P. W. G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996
