The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce

AUTONOMOUS

Mithagar Road, Mulund East, Mumbai-400081, India College with Potential for Excellence

Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, e mail : vazecollege@gmail.com

Syllabus for S.Y. B. Sc. Programme

Chemistry

Syllabus as per Choice Based Credit System

(June 2020 Onwards)

Submitted by

Department of Chemistry Vinayak Ganesh Vaze College of Arts, Science and Commerce Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: <u>vazecollege@gmail.com</u>Website : <u>www.vazecollege.net</u>

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (AUTONOMOUS)

Syllabus as per Choice Based Credit System

1. Name of the Programme	S. Y. B. Sc.Chemistry : CB	CS
The Chemistry course in S. Y. two semesters, to be known as S of THREE core courses and pra	emester III and Semester IV	
2. Course Code	SCH301	SCH401
	SCH302	SCH402
	SCH303	SCH403
3. Course Title	General Chemistry : Paper	: - I
	General Chemistry: Pape	er - II
	Basics of Analytical Chem	nistry:Paper - III
4. Semester wise Course Contents	Copy of the detailed syllabus	enclosed
5. References and additional references	Enclosed in the Syllabus	
6. No. of Credits per Semester	09	
7. No. of lectures per Unit	15	
8. No. of lectures per week	03	
9. No. of Tutorial per week		
	Semester End Exam: 60 n (4 Questions of 15 marks Internal Assessment : 40 1	each)
10. Scheme of Examination	Class Test :15 marks	пагкя
		morlza
	Project/ Assignment :15 1 Class Participation:10 ma	
11 0 11 / 10	No	шко
11. Special notes, if any		
12. Eligibility, if any	As laid down in the Colle website	ege Admission brochure /
13. Fee Structure	As per College Fee Struc	ture specifications
14. Special Ordinances / Resolutions, if any	No	

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce, (AUTONOMOUS)

Programme :S. Y. B. Sc.	Semester: III	Credits	Semester: IV	Credits
Course1 :General Chemistry	Course Code	2.0	Course Code	2.0
	SCH301		SCH401	
Course2 :General Chemistry	Course Code	2.0	Course Code	2.0
	SCH302		SCH402	
Course3 :Basics of Analytical	Course Code	2.0	Course Code	2.0
Chemistry	SCH303		SCH403	
Course4 : ChemistryPractical	Course Code	1.0	Course Code	1.0
Paper I	SCHP1		SCHP4	
Course 5: ChemistryPractical	Course Code	1.0	Course Code	1.0
Paper II	SCHP2		SCHP5	
Course 6: ChemistryPractical	Course Code	1.0	Course Code	1.0
Paper III	SCHP3		SCHP6	

<u>Programme Structure and Course Credit Scheme</u> :

* <u>Semester-wise Details of Chemistry Course</u>

Teaching Scheme (Hrs/Week)			Continuous Internal Assessment (CIA) 40 marks		End Semester Examination Marks		Total		
Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
Course 1	03	03	2.0	15	15	10	60		100
Course 2	03	03	2.0	15	15	10	60		100
Course 3	03	03	2.0	15	15	10	60		100
Course 4, Pracs.			1.0					50	50
Course 5, Pracs.			1.0					50	50
Course 6, Pracs.			1.0					50	50
Total credits of	the co	ourse =	06 + 03	3 = 09	II		1	1	

Teaching Scheme (Hrs/Week)			Assessm	Continuous Internal Assessment (CIA) 40 marks		End Semester Examination Marks		Total	
Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
Course 1	03	03	2.0	15	15	10	60		100
Course 2	03	03	2.0	15	15	10	60		100
Course 3	03	03	2.0	15	15	10	60		100
Course 4, Pracs.			1.0					50	50
Course 5, Pracs.			1.0					50	50
Course 6, Pracs.			1.0					50	50
Total credits of	the co	ourse =	06 + 03	3 = 09			<u> </u>	<u> </u>	

- ➤ L Lectures
- ➤ T Tutorials
- ➢ P Practical
- > C Credits

Course Objectives

- 1 To infuse in the learner a spirit of inquiry into the fundamental aspects of the various core areas of Chemistry.
- 2 To make the learner capable of analysing and interpreting results of the experiments he conducts or performs.
- 3 To make the learner capable of solving problems in the various units of this course.
- 4 To give the learner an opportunity to get hands on experience of the various concepts and processes in the various branches of chemistry.
- 5 To impart various skills of handling chemicals, reagents, apparatus, instruments and the care and safety aspects involved in such handling.
- 6 To make the learner capable of acquiring or pursuing a source of livelihood like jobs in chemical industry
- 7 To arouse the interest to pursue higher levels of learning in chemistry.

Course Content - Semester III

Course Code	Unit	Topics	Credits	L/Week
	Ι	Chemical Thermodynamics-II,		01
		Electrochemistry	02	
SCH301	II	Chemical Bonding		01
	III	Reactions and reactivity in alkyl and aryl		01
		halides, alcohols and phenols		
	Ι	Chemical Kinetics-II, Solutions		01
SCH302	II	Selected topics on p block elements	02	01
	III	Carbonyl Compounds; Epoxides	-	01
	Ι	Introduction to Analytical Chemistry and		01
SCH303		Statistical, Treatment of analytical data-I	02	
	II	Classical Methods of Analysis		01
	III	Instrumental Methods-I		01
SCHP1		Chemistry Practical I	01	03
SCHP2		Chemistry Practical II	01	03
SCHP3		Chemistry Practical III	01	03

	S. Y. B. Sc. C	HEMISTRY :Choice Based	l Credit System		
		Semester III			
		PAPER : I			
Course	Name: General Chemis	try(45lectures)	Course Code So	CH301	
Periods p	er week (1 period 50 min	utes)	03		
Credits			02		
Evoluot	on System		Hours	Marks	
Evaluat	ion System	Theory Examination	2.0	60	
		Theory Internal		40	
				No. of lectures	
Unit I	1.1 Chemical Therm	odvnamics-II		08	
	 Variation of Gib 1.1.2 Gibbs-Helmholtz reaction, isochore 1.1.3 Thermodynamics Potential and its Duhem equation. 1.1.4 Concept of Fugac and pressure. 1.2 Electrochemistry 1.2.1 Conductivity, ec with dilution for independent mig 1.2.3 Applications of c of ionization and solubility product (Numericals expect 1.2.4 Transference nu Moving boundat 	city and Activity. Variation of fugac quivalent and molar conductivity and weak and strong electrolytes. 1.2.2 ration ofions. conductance measurements: Determ d ionization constant of weak electro t of sparingly soluble salts, ionic pro- ected). mber and its experimental determin ry method (Numerical expected).fac	emperature. erm and van't Hoff perties, Ch emical ature, Gibb's ity with temperature d their variation Kohlrausch law of ination of degree olyte, solubility and oduct of water. ation using	07	
Unit II	transport numbe				
	2.1.2 Types of Ionic2.1.3 Radius Ratio R2.1.4 Lattice Energy	onditions for the Formation of Ionic Crystals		05	

	2.2 Directional Bonding- Orbital Approach	05
	2.2.1. Covalent Bonding : Valence Bond Theory- Introduction and basic tenets	
	2.2.2. Interaction between two hydrogen atoms and Potential energy diagram	
	of the resultant system 2.2.3 . Corrections applied to the system of formation of Hydrogen molecule	
	2.2.4 . Resonance and concept of Formal charge, Rules forwriting resonance structures	
	 2.2.5. Bonding in polyatomic species, need for hybridization andtypes of hybrid orbitals- sp, sp₂, sp₃, sp₂d, sp₃d, sp₂d₂, sp₃d₃, energetics of hybridisation. 	
	2.3 Molecular Orbital Theory	05
	2.3.1. Comparing atomic orbitals and Molecular orbitals	
	2.3.2 . Linear combination of atomic orbitals to give molecular orbitals LCAO-MO approach	
	 2.3.3. Molecular orbital diagram H2, He2, diatomic molecules of second period elements and their ions, heteronucleardiatomic molecules CO, NO, HCl. Calculate bond order and predict magnetic property. (Problems and Numericals expected wherever possible) 	
Unit III	Organic Chemistry	
	3.1 Reactions and reactivity in alkyl and aryl halides	09
	3.1.1 Alkyl halides: Nucleophilic substitution reactions: SN ¹ , SN ² , Neighbouring Group participation (NGP), SNi and SNi' mechanisms with stereochemical aspects and factors affecting nucleophilic substitution reactions-nature of substrate, solvent, nucleophilic reagent and leaving group.	
	3.1.2 Aryl halides	
	Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution (SNAr) addition-elimination mechanism and benzyne mechanism.	
	3.2 Alcohols and Phenols	06
	3.2.1 Alcohols: Nomenclature, Preparation: Hydration of alkenes, Oxymercuration-demercuration reaction ; hydrolysis of alkyl halides, reduction of aldehydes and ketones, using Grignard reagent. Properties: Hydrogen bonding, types and effect of hydrogen bonding on different properties. Acidity of alcohols, Reactions of alcohols.	
	3.2.2 Phenols: Preparation, physical properties and acidic character., factors affecting acidity of phenols . Reactions of phenols.	

On studying the syllabi the learner will be able to

- Recognize the importance of certain thermodynamic functions like Gibbs free energy, partial molal properties, fugacity, activity and will be able to apply these concepts to various physicochemical processes.
- > Predict the behaviour of the electrolytes by conductance phenomenon and to apply
- ▶ Kohlrausch law for determination of solubility product of salt and ionic product of water.
- Realise the importance of transport number of an ion by solving the problems associated with it and will also gain the knowledge of the methods of determination of transport number.
- > Discuss the energetics of ionic and covalent bond formation.
- Predict the coordination number of ion in crystal
- > Discuss the trends in lattice energy of ionic compounds
- > Explain bonding and shape of polyatomic species based on Valence Bond Theory
- Apply Molecular orbital theory to homo and hetero diatomic molecules, predict their magnetic properties, correlate bond energy and bond length with bond order
- Identify a given nucleophilic substitution reaction mechanism as SN¹, SN²(with or without NGP) SNi or SNi².
- Explain the effect of the nature of substrate, solvent, reagent and leaving group on the reaction pathway and the stereochemical outcome of the reaction.
- > Write the mechanism for a SNAr reaction.
- Predict the products of a SNAr .Write the mechanism of a given nucleophilic substitution reaction mechanism and label the major and minor products.
- > Identify the different methods for the synthesis of alcohols and phenols
- > Predict the product of organic reactions involving alcohols and phenols as substrates.
- > Design the synthesis of simple alcohols and phenol
- > Predict acidity of substituted phenols based on substituents

Reference Books :

- 1. Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
- 2. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 3. J.D.Lee, Concise Inorganic Chemistry, 4th edition, ELBS
- 4. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press (1999) page
- 5. James E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity
- 6. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press
- Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.

		Semester III		
		PAPER : II		
Course	Name: General Chemistry(4	5 lectures)	Course Code SC	CH302
Periods p	er week (1 period 50 minutes)		03	
Credits			02	
	• • • • • • • • •		Hours	Marks
Evaluat	ion System	Theory Examination	2.0	60
		Theory Internal		40
				No. of lectures
Unit I	1.1 Chemical Kinetics - II			07
Unit II	Concept of energy of a 1.1.3. Theories of reaction ra of bimolecular reaction (Qualitative treatment of 1.2 Solutions 1.2.1 Thermodynamics of a deviations from Raou composition and tem solutions. Distillation 1.2.2 Partial miscibility of impurity on partial m Triethanolamine – W 1.2.3 Immiscibility of liquity	ideal solutions: Ideal solutions a alt's law–non-ideal solutions. V perature composition curves of of solutions. Leverrule. Azeotr liquids: Critical solution tempe siscibility of liquids with respec vater and Nicotine – Water syste ids- Principle of Steamdistillation its applications, solvent extract als expected)	pected). tted complex theory theories. and Raoult's law, apour pressure- ideal and non-ideal opes. rature; effect of t to Phenol-Water, ems on.Nernst	08
Unit II	2.1.1. Electron deficient con acidity and application2.1.2. Preparation of simple	mpounds- BH3, BF3,BCl3 with a ons. e boranes like diborane and tetra g in diborane and tetraborane (2	aborane.	15
	2.2 Chemistry of Silicon a	nd Germanium		
	2 2 1 Siliaan aamnaunda O	ccurrence, Structure and inertne	ss of SiO2	

	2.3 2.3.1	1 A A A A A A A A A A A A A A A A A A A	
	2.3.3.	. Synthesis of ammonia by Bosch- Haber process .	
Unit III	3.1	Carbonyl Compounds	12
	3.1.1	. Nomenclature of aliphatic, alicyclic and aromatic carbonyl compounds. Structure, general methods of preparation; Oxidation of primary and secondary alcohols using PCC, hydration of alkynes, action of Grignard reagent on esters, Rosenmund reduction, Gattermann – Koch formylation and Friedel Craft acylation of arenes	
	3.1.2	 General mechanism of nucleophilic addition, andacid catalyzed nucleophilic addition reactions. 	
	3.1.3	. Reactions of aldehydes and ketones with NaHSO ₃ , HCN, RMgX, alcohol, amine, phenyl hydrazine, 2,4-Dinitrophenyl hydrazine, LiAlH ₄ and NaBH ₄ .	
	3.1.4.	Keto-enol tautomerism: Mechanism of acid and Base catalysed enolization	
		Active methylene compounds: ethyl acetoacetate and diethyl malonate and their applications inorganic synthesis.	
	3.1.6.	Synthesis of enamines; alkylation and acylation of enamines .	
	3.2	Epoxides:	03
	3.2.1.	Nomenclature and methods of preparation.	
	3.2.2.	Reactions of epoxides: reactivity, ring openingreactionsby nucleophiles	
		(a) In acidic conditions: hydrolysis, reaction with halogenhalide, alcohol, hydrogen cyanide.	
		(b) In neutral or basic conditions: ammonia, amines, Grignard reagents, alkoxides.	

On studying the syllabi the learner will be able to

- Classify the type of complex reactions
- > Interpret the effect of temperature on the rate of the reaction through Arrhenius equation,
- Compare the collision theory with the activated complex theory and to justify the concepts through problem solving.
- Classify the solution into ideal and non-ideal and correlate the ideality of the solution with Raoult's law,
- Interpret the vapour pressure-composition and vapour pressure-temperature curves for ideal and non-ideal solutions,
- Predict the effect of impurity on partially miscible liquid with respect to phenol-water, Triethanol-water and nicotine water system,
- Apply the Nernst distribution law to solvent extraction techniques and to describe the principle of steam distillation.
- Define electron deficient compounds, Write the electronic configuration of group 13 elements and apply lewis acid and base concept to group 13 elements.
- Write the preparation of boranes, diboranes and pentaboranes, Draw the structure and bonding in diboranes and tetraboranes.
- ➢ Write the electronic configuration of of group 14 elements.
- ≻ Establish inertness of SiO₂, describe preparation of SiCl₄ and draw the structure of SiCl₄.
- > Describe the extraction of Germanium.
- Write the electronic configuration of group 15 elements; identify different trends in chemical reactivity, understand the method of preparation of oxides of nitrogen.
- > Draw the structure of oxides of nitrogen, Describe synthesis of ammonia by Haber's process.
- > Identify the different methods for the synthesis of aldehydes and ketones
- > Write the general mechanism of nucleophilic addition reaction
- > Predict the product of organic reactions involving aldehydes and ketones assubstrates
- > Write the mechanism for keto enol tautomerism under acidic and basic conditions
- > Plan synthesis of simple compounds using diethyl malonate and ethyl acetoacetate
- > Synthesize simple compounds using alkylation and acylation of enamines
- > List the different methods for the synthesis of epoxides
- Write the products and mechanism for ring opening of epoxides under acidic and basic conditions.

- 1. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt.Ltd., New Delhi (2009).
- **2.** B. S. Bahl and G. D. Tuli 'Essentials of Physical Chemistry,' S.Chand and Company(Pvt) Ltd, New Delhi
- 3. J.D.Lee , Concise Inorganic Chemistry, 4th edition ,ELBS
- 4. R Gopalan , Universities Press India Pvt.Ltd. Inorganic Chemistry for Undergraduates
- 5. Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd.
- 6. Pub.Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.

	~~	EMISTRY : Choice Based (Semester III			
		PAPER : III			
	Name: Basics of Analytica	-	Course Code S	SCH303	
•	er week (1 period 50 minutes	S)	03		
Credits			02		
Evaluat	ion System	Theory Fromination	Hours	Marks	
	·	Theory Examination Theory Internal	2.0	60 40	
			I	No. of lectures	
Unit I	Introduction to An Analytical data - I	nalytical Chemistry and Statisti	ical Treatment of	09	
	 significance in Anal 1.1.2 Purpose of Chemic (i) On the nature of i Complete Analysis (ii) On the size of the microanalysis) 1.2 Significance of Samp 1.2.1 Terms involved in S 1.2.2 Types of Sampling 1.2.3 Sampling technique 1.3 Results of Analysis 1.3.1 Errors in Analysis a 1.3.2 Precision and Accur 1.3.3 Corrections for Dete expected wherever 	cal Analysis; Analysis Based information required: (Proximate, H is) and sample used (Macro, semi-micro an bling in Analytical Chemistry Sampling es and their types racy in Analysis erminate Errors (Problems includin required.	Partial, Trace, nd	06	
Unit II	analysis. Comparing Volume 2.1.2 The Conditions suit 2.1.3 Types of titrimetry (Iodometry, Iodime and indicators used 2.1.4 Tools of Titrimetry	ls: Terms involved in Titrimetric m etry and Titrimetry table for titrimetry – Neutralisation (Acidimetry, alkal try) Precipitation and Complexome in these titrations. : Graduated glasswares and Callibr and Secondary standards in Titrin	limetry),Redox, etric titrations ration Standard	05	

		1
	2.2 <u>NeutralisationTitrations</u>	04
	2.3.1 Concept of pH and its importance in Neutralisation Titrations	
	2.3.2 End point and Equivalence point of Neutralisation titrations Determination of End point by using-	
	2.3.3 Indicators causing color change, Change in potential,(by potentiometry) Change in conductance (by conductometry)	
	 2.3.4 Construction of titration curve (on the basis of change in pH) of a Titration of Strong acid-weak base 2. Strong base-weak acid Gravimetric analysis 	
	2.4 <u>General Introduction to Gravimetry</u>	06
	2.4.1 Types of Gravimetric Methods :	
	 2.4.2 Precipitation Gravimetry: i) Steps involved in precipitation gravimetryanalysis, ii) Conditions for precipitation iii) Completion of precipitation, iv) Role of Digestion, Filtration, Washing, Drying Ignition of precipitate. v) Applications of Gravimetric Analysis: Determination of sulfur in organic compounds; Estimation of Nickel in Cu-Ni alloy using dimethyl glyoxime; Determination of Aluminum by converting it to itsoxide. 	
Unit III	Instrumental Methods-I	
	3.1 Basic Concepts in Instrumental method Relation between the Analyte, Stimulus and measurement of change in the observable property.	03
	3.2 Block Diagram of an Analytical instrument.	
	 3.3 Types of Analytical Instrumental methods based on 1.Optical interactions (eg.Spectrometry :uv-visible, Polarimetry) 2. Electrochemical interactions (eg. Potentiometry,Conductometry,) 3. Thermal interactions (eg. Thermogravimetry) 	
	3.4 Spectrometry	07
	 3.4.1 Interaction of electromagnetic radiation with matter: Absorption and Emission spectroscopy. 3.4.2 Basic Terms: Radiant Power, Absorbance, Transmittance, monochromatic light, Polychromatic light, Wavelength of maximum absorbance, Absorptivity and Molar Absorbtivity 	
	3.4.3 Statement of Beer's Law and Lambert's Law, Combined Mathematical Expression of Beer -Lambert's Law, Validity of Beer-Lambert's Law, ,	

Deviations from Beer-Lambert's Law ((Real deviations, Instrumental deviations and Chemical deviations)(Numerical problems based on	
Beer-Lambert's Law)	
3.4.4 Instrumentation for absorption spectroscopy: Colorimeters and Spectrophotometers	
3.4.5 Block Diagrams for Single beam and Colorimeter, and spectrophotometer (Principles, Construction and working-Details of Components expected	
i.e , source ,Sample holder , Filters/Monochromators, Detectors such as Photomultiplier tube)	
3.4.6 Applications of UV-Visible Spectrophotometry	0
a) Qualitative analysis such as Identification of functional groups in	U
Organic compounds, Chromophores and Auxochrome, cis and trans isomers.	
b) Quantitative analysis by Calibration curve method	
3.4.7 Photometric Titrations: Principle, Instrumentation, Types of Photometric titration Curves with examples	0

On studying the syllabi the learner will be able to

- > Outline the various instrumental methods of analysis
- Identify the advantages of using instruments to make measurements
- Discover the various observable properties of a given analyte and the stimulus best suited for its analysis.
- > Illustrate about a generalized diagram of an analytical instrument
- > Choose a suitable instrumental method for analysis and learn the basic terms in spectrometry
- Compare the relationship between absorbance (and its variations) and concentration of the analyte.

- 1. Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R.Crouch
- Skoog et al. "Fundamentals of Analytical chemistry" Cengage Learning, Eight Edition, chapter 13, 14 and 15
- 3. Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal ,Sham K.Anand pp2.107-2.148
- 4. Gary D. Christan," Analytical Chemistry", VIth Edition, Wiley StudentsEdition, Chapter No8,9,10
- 5. Modern Analytical Chemistry, David Harvey (page numbers 232-265)
- 6. Fundamental of Analytical Chemistry by Douglas A. Skoog, West, F. James Holler, S. R. Crouch

PRACTICALS SEMESTER - III

COURSE CODE: SCHP1

Paper- I

CREDITS: 01

RECAPITULATION: Laboratory Safety Practices

I) Conductometry

- a) To verify Ostwald's dilution law for weak acid conductometrically.
- b) To determine solubility of sparingly soluble salts (any two) conductometrically.

II) pH Metry

To determine amount of strong acid by pH measurements

III) Phase equilibria

Phase equilibria : To determine the critical solution temperature (CST) of phenol – water system.

IV) Chemical kinetics

- a) Determination of energy of activation of acid catalyzed hydrolysis of methylacetate.
- b) To investigate the reaction between $K_2S_2O_8$ and KI with equal initial concentrations of the reactants

V) Identification of cations and anions with complexities

Identification of cations in a given mixture and Analytically separating them [From a mixture containing not more than two of the following: Pb(II), Ba(II), Ca(II), Sr (II), Cu(II), Cd(II), Mg(II), Zn(II), Fe(II), Fe(III), Ni(II), Co(II) Al(III), Cr(III)]

Purity of substance :

Crystallisation of potassium iodate and to estimate its purity before and after the separation

Reference Books :

- 1. Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 2. Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8th Ed., McGraw-Hill, New York (2003).
- 3. Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rd Ed., W.H. Freeman and Co., New York (2003).
- 4. Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001)

SEMESTER - III

COURSE CODE: SCHP2

Paper- II

CREDITS: 01

RECAPITULATION: Laboratory Safety Practices

Water Analysis

- a) To Estimate total hardness of water
- b) To determine chemical oxygen demand of water sample
- c) To determine Acidity and alkalinity of water sample

Organic Preparations (Any seven)

Short organic preparation and their purification

Use 0.5-1.0g of the organic compound. Purify the product by recrystallization. Report theoretical yield, percentage yield and melting point of the purified product.

Organic preparation

- 1. Cyclohexanone oxime from cyclohexanone.
- 2. Glucosazone from dextrose or fructose
- 3. Tribromoanilinefromaniline.
- 4. m-Dinitrobenzene from nitrobenzene
- 5. Phthalic anhydride from phthalic acid by sublimation
- 6. Acetanilide from aniline
- 7. p-Bromoacetanilide from acetanilide
- 8. Iodoform from acetone

Reference Books :

- 1. Practical Inorganic Chemistry by G. Marr and B. W. Rockett van Nostrand Reinhold Company (1972)
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)

- 4. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)
- 5. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.

SEMESTER - III

COURSE CODE: SCHP3

Paper- III

CREDITS: 01

RECAPITULATION: Laboratory Safety Practices

I. Tools of Analytical chemistry

II. Gravimetric Estimations

- 1. Nickel as nickel-dmg
- 2. Barium as Barium sulphate

III. Colorimetry

To verify Beer-Lambert's Law

IV. pH metry

Determination of buffer capacity of acid buffer and basic buffer

V. Estimation of drugs

Estimation of aspirin

- D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed., Chapter 15, pp.345-381.
- 2. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (I961).
- 3. R.V. Dilts. "Analytical Chemistry. Methods of Separation," van Nostrand, N.Y. (1974).
- Some Experiments for B. Tech in Chemistry & Chemical Technology compiled by Prof. J.B.BARUAH, Mrs. Abhilasha Mohan Baruah and Mr. ParikshitGogoi.

S. Y. B. Sc. CHEMISTRY : Choice Based Credit System (CBCS)

SEMESTER : IV

Course Content - Semester IV

Course Code	Unit	Topics	Credits	L/Week
	Ι	Electrochemistry-II, Phase Equilibria		01
	II	Comparative Chemistry of the transition		01
SCH401		metals &Coordination Chemistry	02	
	III	Carboxylic acids and their derivatives,		01
		Sulphonic acids	02	
	Ι	Solid state, Catalysis		01
SCH402	II	Ions in aqueous medium & Uses and		01
	In Ions in aqueous medium & Uses and	02		
		Oxides and oxo-acids	-	
	III	Nitrogen containing compounds;		01
		stereochemistry II		
	Ι	Separation Techniques in Analytical		01
SCH403		Chemistry	02	
	II	Instrumental Methods-II		01
	III	Statistical Treatment of analytical dataII		01
SCHP4		Chemistry Practical I	01	03
SCHP5		Chemistry Practical II	01	03
SCHP6		Chemistry Practical III	01	03

		Semester IV		
		PAPER : I		
Course	Name: General Chemistry(4	45 lectures)	Course Code S	CH401
Periods p	oer week (1 period 50 minutes)	03	
Credits			02	
Fyaluat	ion System		Hours	Marks
Evaluat	ion System	Theory Examination	2.0	60
		Theory Internal		40
				No. of lectures
Unit I	1.1 Electrochemistry II			08
	1.1.1 Electrochemical con	ventions, Reversible and Irrevers	sible cells.	
	 electrode potential, E 1.1.3 Thermodynamics of a properties: ΔG, ΔH at 1.1.4 Calculation of equilibre expected) 1.1.5 Concentration cells we junction potential and 1.1.6 pH determination using (Numericals expected) 1.2 Phase Equilibria_ 1.2.1 Phases, components 	its importance, Types of electroc Electrochemical series(Numerica a reversible cell, calculation of the nd ΔS from EMF data. (Numeric prium constant from EMF data. (with transference and without trans d saltbridge. ng hydrogen electrode and quint and degrees of freedom of a sys Bibbs Phase Rule and its thermoo	ls expected). hermodynamic cal sexpected) Numericals hsference. Liquid hydrone electrode	07
	derivation. 1.2.2 Derivation of Clausi phase equilibria.(nur 1.2.3 Phase diagrams of o 1.2.4 Two component syst	us – Clapeyron equation and its	importancein ndsulphur).	
Unit II	Comparative Chemistry 2.1.1 Definition, general	of Transition Metals characteristics of Transition elem	nents	06
	 Variable oxidation complexes, colour, catalytic property 2.1.3 Qualitative tests for 	nsition elements with reference to states, colour, magnetic property magnetic property, ability to for transition metal ions (with references, iron, Cobalt, Nickel and Co	y ability to form rm complexes , rence to	

	Coordination Chemistry	09
	2.2.1 Historical perspectives, Molecular compound – double salt, complex salt	
	2.2.2 Werner's theory of Coordination compounds	
	2.2.3 Basic terms complex ion, charge on the complex, ligand and their types Coordination number and Nomenclature	
	2.24 Effective atomic number Rule, Eighteen electron rule	
	2.2.5 Isomerism (structural, stereo, optical) of coordination compounds $(CN = 4, 6)$	
	2.2.6 Evidences for formation of coordination compounds	
	2.2.7 Applications of coordination compounds	
	 2.2.8 Nature of the Metal-Ligand Bond i) Valence Bond Theory: Hybridisation of the central metal orbitals sp3, dsp²/sp²d, sp³d, sp²d², sp³d³ 	
	ii) Inner and Outer orbital complexes (suitable examples)	
	iii) Eletroneutrality principle and backbonding	
	iv) Limitations of Valence Bond Theory	11
Unit III	3.1 <u>Carboxylic Acids and their Derivatives</u>	11
	3.1.1 Nomenclature, structure and physical properties, acidity of carboxylic acids, effects of substituents on acid strength of aliphatic and aromatic carboxylic acids.	
	3.1.2 General methods of preparation of carboxylic acids: oxidation of alcohols and alkyl benzene, carbonation of Grignard and hydrolysis ofnitriles.	
	3.1.3 Reactions: Acidity, salt formation, decarboxylation, Reduction of Carboxylic acids with LiAlH ₄ , diborane, Hell-Volhard-Zelinsky reaction, Conversion of carboxylic acid to acid chlorides, esters, amides and acid anhydrides and their relative reactivity.	
	3.1.4 Acid derivatives : Mechanism of nucleophilic acylsubstitution and acid- catalysed nucleophilic acylsubstitution. Interconversion of acid derivatives by nucleophilic acylsubstitution.	
	3.2 <u>Sulphonic acids</u>	04
	3.2.1 Nomenclature, preparation of aromatic sulphonic acids by sulphonation of benzene (with mechanism), toluene and naphthalene.	
	3.2.2 Reactions: Acidity of arene sulfonic acid, Comparative acidity of carboxylic acid and sulfonic acids. Salt formation, sulphonation. Reaction with alcohol, Phosphorous pentachloride, IPSO substitution.	

On studying the syllabi the learner will be able to

- Identify a chemical cell from a concentration cell and correlate thermodynamic concepts with electrochemistry
- Develop Nernst equation for emf of the cell and electrode potential and make use of it to determination the equilibrium constant of a cell
- > Outline the importance of liquid junction potential.
- > Discuss the importance of pH of a solution and its determination by electrochemical cells.
- > Define and explain the concept of phase, components and degree of freedom.
- Explain the importance of phase rule and its application to one component system and two component system
- > Predict various properties of transition elements on the basis of their electronic configuration
- ▶ List the structures of possible isomers of a given complex.
- > Discuss the stability of complex based on EAN rule and 18 electron rule.
- Outline the structure of complex and interpret the nature of metal-ligand bond based on Valence Bond Theory.
- Discuss the different methods for the synthesis of carboxylic acids.
- > Predict the product of organic reactions involving carboxylic acids as substrates
- Write the mechanism of nucleophilic acyl substitution reactions
- > Design synthesis of simple carboxylic acids and their derivatives by interconversion.

Reference Books :

- 1. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry CengageLearning India Pvt.Ltd., New Delhi (2009).
- 2. Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
- 3. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co., NewYork (1985). 6. K.L.Kapoor A textbook of Physical chemistry.
- 4. J.D.Lee, Concise Inorganic Chemistry, 4th edition, ELBS
- 5. Inorganic Chemistry Gary Wulfsberg, Viva Book, First Indian Edition 2002
- 6. F.A Cotton and G.Wilkinson 'Basic Inorganic chemistry'John Wiley & Sons
- 7. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education

8. Eliel, E. L. and Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994

	S. Y. B. Sc. CHE	MISTRY :Choice Based	Credit System	
		Semester IV		
		PAPER : II		
Course	Name: General Chemistry(4	5 lectures)	Course Code SC	CH402
Periods p	er week (1 period 50 minutes)		03	
Credits			02	
Evaluat	ion System		Hours	Marks
Evaluation System		Theory Examination Theory Internal	2.0	60
		Theory Internal		40No. oflectures
Unit I	 1.1.2 Characteristics of simple centered cubic system (onlyexpression for rate (onlyexpression for rate (derivation expected), 1 lattice structure, struct Avogadro's number (1) 1.2 Catalysis 1.2.1 Types of catalysis, cat Catalyst poisoning and 1.2.2 Mechanisms and kinet 	alytic activity, specificity and s d deactivation. tics of acid-base catalyzed react and efficiency of nanoparticles	nd body lattice expected) 's equation udying crystal nation of electivity, inhibitors, tions, effect of pH.	07
	1.3.1 Rotational Spectrum: bond moment,molecul molecule, rigid rotor, n obtaining pure rotation	Introduction to dipole moment, larstructure,.Rotational spectrur noment of inertia, energy levels al spectrum, selection rule, natu nuclear distance and isotopic shi	n of a diatomic , conditions for are of spectrum,	04
Unit II	hydrolysis of Cations- 2.1.2 Latimer Equation. Rel of metal ions graphica	city of Anions Hydrolysis of Cations predictin effect of charge and radius. ationship between pka, acidity	and z2/r ratio	07

	Moderately acidic, Strongly acidic, Very strongly acidic, with pka values	
	range and with examples.	
	2.1.4 Hydration of Anions; Effect of charge and radius; Hydration of anion	
	concept, diagram classification on the basis of basicity.	
		08
	2.2 Metallurgy	00
	2.2.1 Types of metallurgies.	
	2.2.1 Types of metallurges. 2.2.2 General steps of metallurgy ; Concentration of ore, calcinations, roasting,	
	reduction and refining.	
	2.2.3 Metallurgy of copper: Occurance, physicochemicalprinciples, Extraction	
	of copper from pyrites and refiningby electrolysis. Extraction of titanium	
	and vanadium.	
	2.2.4 Environmental chemistry of volatile oxides of nitrogen and Sulphur.	
	2.2.5 Uses of acids of nitrogen and Sulphur	
Unit III	Nitrogen containing compounds and heterocyclic compounds	10
	3.1.1 Amines: Nomenclature, basicity ,factors affecting basicity of aliphatic	
	and aromatic amines; 3.1.2 Preparation: Reduction of aromatic nitro compounds using catalytic	
	hydrogenation, chemical reduction using Fe-HCI, Sn-HCl, Zn-acetic	
	acid, reduction of nitriles, ammonolysis of halides, reductive amination	
	Hofmann bromamide reaction ((no mechanism)	
	Hormann bromannde reaction ((no mechanism)	
	3.1.3 Reactions- Salt Formation, N-acylation, N-alkylation, Hofmann's	
	exhaustive methylation (HEM),Hofmann- elimination reaction,	
	reaction with nitrous acid, carbylamine reaction, Electrophilic	
	substitution in aromatic amines: bromination, nitration and	
	sulphonation.	
	3.1.4 Diazonium Salts:	
	Preparation and their reactions/synthetic application- Sandmeyer Reaction -	
	Gattermann reaction, Gombergreaction, Replacement of diazo group by -H,-	
	OH. Azo coupling with phenols, naphthols and aromatic amines, reduction	
	ofdiazonium salt to aryl hydrazine and hydroazobenzene .	
	ordiazoniam suit to aryr nydrazino and nydroazobonizono.	
	3.1.5 Five membered Heterocyclic compounds	
	Nomenclature, structure and aromaticity in five membered heterocyclic	
	compound containing one heteroatom; Paal Knorr synthesis for furan,	
	thiophene and pyrrole; reactivity of pyrrole, furan and thiophene towards	
	electrophilic aromatic substitution reactions ; General mechanism of	
	Electrophilic aromatic substitution ; Diels Alder reaction of furan ;	
	Basicity and acidity of pyrrole.	
	3.2 Stereochemistry - II	05
	stereoenemistry in	05
1	3.2.1 Elements of symmetry: Mirror Plane symmetry (inversion	
	centre), rotation-reflection (alternating) axis	
	centre), rotation-reflection (alternating) axis3.2.2 Chirality of compounds without stereogenic centre: allenes spirans	

ſ	3.2.3 Stability of cycloalkanes: Strains in cycloalkanes- angle, eclipsing,	
	Trans annular (3 to 8 membered).	
	3.2.4 Conformations of cyclohexane, chair , boat and twist boat forms , relative stability with energy	
	3.2.5 Stereochemistry of mono and di- alkyl cyclohexanes and their relative Stabilities.	

On studying the syllabi the learner will be able to

- Recall the laws of crystallography and the types of crystal
- Deduce Bragg's equation,
- > Interpret the crystal structure by X ray diffraction method and
- > Determine the value of Avogadro number, Identify the type of catalysis
- > Explain the role of inhibitors in catalysis and catalytic activity
- > Evaluate the mechanism of acid-base catalysed reactions
- > Understand the hydrolysis of cations and anions, Classify the non aqueous solvents.
- > Identify acidic and basic nature of salts in aqueous medium.
- > Explain predominance diagram, Define metallurgy.
- > Discuss various methods used in the reduction of ores.
- > Describe extraction of titanium and vanadium.
- > Explain impact of volatile oxides of nitrogen and sulphur on environment.
- > Describe the uses of nitric acid, Describe the uses of sulphuric acid.
- > Identify the different methods for the synthesis of amines
- > Predict the basicity of amines based on structure.
- > Outline the product of organic reactions involving amines as substrates
- Synthesise diazonium salts and apply them to designing synthesis of substituted aromatic compounds
- > Define the different symmetry elements in a molecule and Identify the symmetry elements.
- > Discuss the strain involved in cyclic compounds
- > Draw the different conformations of cyclohexane and compare their energies
- Predict the stereochemistry of mono and di substituted cyclohexane derivatives

Reference Books :

- 1. Solid state chemistry and its Applications by A.R.West , Wiley publications, Second edition 2015/16
- Solid state Chemistry-An Introduction' by L.Smart and E.Moore, CRC Press Taylor and Francis group, 3rd Edition 2005.
- 3. "Chemical Kinetics and Catalysis" by Masel R I January 1 2015
- 4. Emeleus and Anderson, Modern Aspects of Inorganic Chemistry, page no. 435-463.
- 5. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers, New Delhi
- 6. Comprehensive Organic Chemistry- The synthesis and reactions of Organic Compounds, Derek barton ,W. David Ollis.
- 7. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013

S. Y. B. Sc. CHEMISTRY : Choice Based Credit System				
		Semester IV		
		PAPER : III		
Course N	Name: Basics of Analytical	Chemistry (45 lectures)	Course Code S	CH403
Periods p	er week (1 period 50 minutes)	03	
Credits			02	
Evoluoti	on System		Hours	Marks
Evaluati	on System	Theory Examination	2.0	60
		Theory Internal		40
				No. of lectures
Unit I	Methods of separat	ion		
		nues in Analytical Chemistry		04
		Analytical Separations and its impor	rtance in analysis	
		alyte without effecting separation.	itance in analysis.	
	1.3 Types of separation			
		es (Precipitation, iltrationCrystallisat	ion)	
	1.3.2 Based on Electrical	· · ·	- /	
		capacity of a Stationary Phase-Chro	matography;	
		on in two immiscible phases-		
		o exchange with a resin-IonExchang	ge;	
	1.3.6 Based on Gravity-C	Centrifugation		
	1.3.7 Based on volatility-	Distillation		
	1.4 Solvent extraction	L		06
	1.4.1 Introduction, Nerns	t distribution Law, Distribution Rati	io, Partition	
	Coefficient.			
	1.4.2 Conditions of extract temperature, pH.	ction: Equilibration time, Solvent vo	olumes,	
	1 1	ti step extraction ,percentage extrac	tion for single step	
	and multistep extra	ction. Separation factor.		
	1.4.4 Batch and continuou	us extraction		
	1.5 <u>Chromatography</u>			05
	1.5.1 Introduction to Chro	omatography		
	1.5.2 Classification of chr Mobile phase.	romatographic methods based on sta	ationary and	
	-	phy: Principle, techniques and appli	cations of Paper	
		separation of cations.	-	
		ography Principle, technique and A	pplications in	
		rity of a given solute; Following pro		

Un it II	Instrumental Methods - II	
	Instruments based on the electrochemical properties of the analytes.	04
	Potentiometry	
	2.1 Instruments based on the electrochemical properties of the analytes.	
	Potentiometry 2.1.1 Principle	
	2.1.2 Role of Reference and indicator electrodes	
	2.1.3 Applications in Neutralisation reactions with reference to the titration	
	of a Strong acid against a Strong Base (using quinhydroneelectrode)	
	Graphical methods for detection of endpoints 2.2 pHmetry	
	2.2.1 Principle	03
	2.2.2 Types of pH meters	
	2.2.3 Principle, Construction Working and Care of CombinedGlass electrode	
	2.2.4 Applications in titrimetry (Strong acid-Strong Base) biological	
	and environmental analysis	
	2.3 Conductometry	05
	2.3.1 Principle2.3.2 Conductivity cell its construction and care	00
	2.3.2 Conductivity cell its construction and care 2.3.3 Applications in NeutralisationTitrimetry with respect to	
	i) Strong Acid-StrongBase ii) Strong Acid-WeakBase	
	iii) Strong Base-weakAcid iv. Weak Acid- WeakBase.	
	2.3.4 Advantages& limitations of conductometric titrations.	
	2.4 Radioanalytical Methods	03
	2.4.1 Introduction to Radio analytical techniques	05
	2.4.2 Introduction, Classification of analytical techniques	
	2.4.3 Principle and theory of Neutron activation analysis,	
	2.4.4 Advantages of neutron activation analysis	
	2.4.5 Application of neutron activation analysis	
Unit III	Statistical Treatment of analytical data-II	
	3.1 Nature of Indeterminate Errors	03
	3.1.1 The true and acceptable value of a result of analysis	
	3.1.2 Measures of central tendency: mean, median. mode, average	
	3.1.3 Measures of dispersion: Absolute deviation, relativedeviation, relative	
	average deviation, standard deviation, (s, sigma) variance, coefficient of	
	variation.	02
	3.2 Distribution of random errors	
	3.2.1 Gaussian distribution curve.3.2.2 Equation and salient features of Gaussian distribution curve.	
	3.2.3 Concept of Confidence limits and confidence interval and its	03
	computation using Population standard deviation, Student's test, Range	
	3.2.4 Criteria for rejection of doubtful result	
	2.5 d rule, 4.0 d rule, Q test	02

3.5 Test of Significance	02
Null hypothesis, F-test (variance ratio test)	
 3.6 Graphical representation of data and obtaining best fitting straight line a) For line passing through origin b)For line not passing through origin [Numerical problems wherever possible, expected] 	03

On studying the syllabi the learner will be able to

- Discover the importance of separation in sample treatment
- Compare various methods of separations
- Choose a method of separation of an analyte from the matrix
- > Illustrate how a solute gets distributed between two immiscible phases
- > Discuss the principle of solvent extraction and various terms involved therein
- > Interpret the effects of various parameters on solvent extraction of a solute
- > Assess the classification of Chromatographic methods
- Interpret the principles of Paper and thin layer chromatography and make use of it in practice.
- Elaborate the nature of interaction between applied electrical potential and the concentration of the analyte.
- ▶ Inspect the nature of chemical reactions that influence potential of a given cell.
- > Compare with the various types of electrodes or half cells.
- > Examine the nature, need and importance of pH
- > Categorize the applications of the various instrumental methods dealt with
 - The use of statistical methods in chemical analysis.
 - The nature of indeterminate errors
 - The randomness of such errors and its distribution around a correct or acceptable result
 - Computation of Confidence limits and confidence interval
 - Test for rejection of doubtful result
 - Method to draw best fitting straight line

- 1. D.A. Skoog, D.M. West, F.J. Holler and CX.R. Crouch Fundamentals of Analytical chemistry, 8th edition
- 2. G.H. Morrison and H. Freiser, Solvent extraction in analytical chemistry
- 3. P. G. Swell and B. Clarke, Chromatographic separations , Analytical chemistry by open Learning , John Wiley and sons, 1987
- 4. Modern Analytical Chemistry, David Harvey (page numbers 596-606)
- 5. Principles of Instrumental analysis, D. A. Skoog, 3rd edition, Saunders college publishing. Chapters: 20, 23 Page nos: 600 - 605, 631, 704 - 711.
- 6. Vogel's Text book of quantitative inorganic analysis, 4th edition, ELBS/ Longman. Chapters: XIV, XV Page nos: 566 601, 615 625.
- 7. Instrumental methods of analysis, B. K. Sharma, Goel publishing house. Miscellaneous methods: Chapters: 1, 3, 4 Page nos: 1 14, 21 57.
- 8. Modern Analytical Chemistry, David Harvey (page numbers 53-84)
- 9. Fundamentals of analytical chemistry Skoog and West

PRACTICALS SEMESTER IV

COURSE CODE: SCHP4

Paper - I

CREDITS: 01

I) Potentiometry

- 1. To determine standard EMF and the standard free energy change of Danielcell potentiometrically .
- 2. To determine the amount of HCl in the given samplepotentiometrically.

II) Chemical Kinetics

To compare the strengths of HCl and H₂SO₄ by studying kinetics of acid hydrolysis of methylacetate.

III) Inorganic Preparations

- 1. Sodium Hexanitrocobaltate (III)
- 2. Calcium or magnesium oxalate using PFHS technique
- 3. Bis ethylenediaminecopper(II) sulphate.
- 4. Potassium diaqua bis(oxalato) cuprate(II)

Reference Books :

- 1. Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- 2. Garland C. W., Nibler J.W. and Shoemaker D.P., Experiments in Physical Chemistry, 8th Ed., McGraw-Hill, New York (2003).
- 3. Halpern A.M. and McBane G.C., Experimental Physical Chemistry, 3rd Ed., W.H. Freeman and Co., New York (2003).

4. Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001)

SEMESTER - IV

COURSE CODE: SCHP5

Paper- II

CREDITS: 01

Qualitative Analysis of organic compounds including bi-functional groups on the basis of

- 1. Preliminary examination
- 2. Solubilityprofile
- 3. Detection of elements C, H, (O), N, S, X.
- 4. Detection of functional groups
- 5. Determination of physical constants(M.P/B.P)

Solid or liquid Compounds containing not more than two functional groups from among the following classes may be given for analysisto be given:

Carboxylic acids, phenol, carbohydrates, aldehydes, ketones, ester, amides, nitro,

anilides, amines, alkyl and aryl halide.

Students are expected to write balanced chemical reactions wherever necessary.

(Minimum 6 compounds to be analyzed)

- Practical Inorganic Chemistry by G. Marr and B. W. Rockett van Nostrand Reinhold Company (1972)
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.

SEMESTER - IV

COURSE CODE: SCHP6

Paper- III

CREDITS: 01

I. Tools of Analytical Chemistry – II

II. Paper Chromatography

Separation of cations like Fe(III), Ni(II) and Cu(II) in a sample

III. Solvent Extraction

Separation of a solute

III. Conductometry

Estimation of given acid by conductometric titration with strong base

IV. Potentiometry

Estimation of Fe(II) in the given solution by titrating against K₂Cr₂O₇ potentiometrically

V. Gravimetric Estimations

Estimation of sulphate as BaSO₄

VI. Organic Estimation

Estimation of Acetamide by hydrolysis

- 1. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed., Chapter 15, pp.345-381.
- 2. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (I961).
- 3. R.V. Dilts. "Analytical Chemistry. Methods of Separation," van Nostrand, N.Y. (1974).
- 4. Some Experiments for B. Tech in Chemistry & Chemical Technology compiled by Prof. J.B.BARUAH, Mrs. Abhilasha Mohan Baruah and Mr. ParikshitGogoi.

