

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (AUTONOMOUS)

College with Potential for Excellence

Mithaghar Road, Mulund East, Mumbai-400081, India Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, e mail : vazecollege@gmail.com

Syllabus for T. Y. B. Sc. Programme: Chemistry (Six Units)

Syllabus as per Choice Based Credit System

(June 2020 Onwards)

Submitted by

Department of Chemistry Vinayak Ganesh Vaze College of Arts, Science and Commerce Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (AUTONOMOUS)

Syllabus as per Choice Based Credit System

1.	Name of the Programme	T. Y. B. Sc. Chemistry	(Six Units) : CBCS	
	T. Y. B. Sc. in Chemistry course i testers, to be known as Semester V			
	courses and o	one Applied component cours	se.	
		SCH501	SCH601	
2. 0	Course Code	SCH502	SCH602	
		SCH503	SCH603	
		SCH504	SCH604	
		SHFC501	SHFC601	
		Physical Chemistry : Pa	aper - I	
3. Course Title		Inorganic Chemistry : Pa	aper - II	
		Organic Chemistry : P	aper - III	
		Analytical Chemistry : Pap	per - IV	
		Heavy and Fine Chemicals : HFC-AC (Applied components)		
4.	Semester wise Course Contents	Copy of the detailed sylla	bus Enclosed	
5.	References and additional references	Enclosed in the Syllabus		
6.	No. of Credits per Semester	16 and 4.0 for HFC-AC =	20	
7.	No. of lectures per Unit	15		
8.	No. of lectures per week	04 of each course and 3.0	for HFC-AC	
9.	No. of Tutorial per week			
		Semester End Exam: 60 marks		
		(4 Questions of 15 marks each)		
10	Scheme of Examination	Internal Assessment : 40 marks		
10.	Scheme of Examination	Class Test : 15 marks		
		Project/ Assignment : 15 marks		
		Class Participation : 10 marks		
11.	Special notes, if any	No		
12.	Eligibility, if any	As laid down in the College A website		
13.	Fee Structure	As per College Fee Structure	specifications	
14.	Special Ordinances /	No		
	Resolutions, if any			

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce, (AUTONOMOUS)

Programme : T. Y. B. Sc.	Semester: V	Credits	Semester: VI	Credits
Course 1 : Physical Chemistry	Course Code	2.5	Course Code	2.5
	SCH501		SCH601	
Course 2 : Inorganic Chemistry	Course Code	2.5	Course Code	2.5
	SCH502		SCH602	
Course 3 : Organic Chemistry	Course Code	2.5	Course Code	2.5
	SCH503		SCH603	
Course 4 : Analytical Chemistry	Course Code	2.5	Course Code	2.5
	SCH504		SCH604	
Course 5: Chemistry Practicals	Course Code	3.0	Course Code	3.0
paper I & II	SCHP501		SCHP502	
Course 6: Chemistry Practicals	Course Code	3.0	Course Code	3.0
paper III & IV	SCHP502		SCHP602	
Course 7 : Applied component	Course Code	2.0	Course Code	2.0
Heavy and fine chemicals	SHFC501		SHFC601	
HFC-AC				
Course 8 : Chemistry Practicals	Course Code	2.0	Course Code	2.0
HFC	SHFCP501		SHFCP601	

<u>Programme Structure and Course Credit Scheme</u> :

* <u>Semester-wise Details of Chemistry Course</u>

Teaching Scheme (Hrs/Week)				Assessm	ious Inte nent (CIA marks		End Sem Examina Marks	Total	
Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
Course 1	04	01	2.5	15	15	10	60		100
Course 2	04	01	2.5	15	15	10	60		100
Course 3	04	01	2.5	15	15	10	60		100
Course 4	04	01	2.5	15	15	10	60		100
Course 5, Pracs.			3.0					100	100
Course 6, Pracs.			3.0					100	100
Course 7 - HFC	03	01	2.0	15	15	10	60		100
Course 8, Pracs.			2.0					100	100
Total credits of	the co	urse =	10 + 00	5 + 02+ 0)2 = 20		1	1	

Teaching Scheme (Hrs/Week)				Assessm	ious Inte nent (CIA marks		End Semester Examination Marks		Total
Course	L	Р	C	CIA-1	CIA-2	CIA-3	Theory	Practical	
Course 1	04	01	2.5	15	15	10	60		100
Course 2	04	01	2.5	15	15	10	60		100
Course 3	04	01	2.5	15	15	10	60		100
Course 4	04	01	2.5	15	15	10	60		100
Course 5, Pracs.			3.0					100	100
Course 6, Pracs.			3.0					100	100
Course 7 - HFC	03	01	2.0	15	15	10	60		100
Course 8, Pracs.			2.0					100	100

Max. Time, End Semester Exam (Theory) : 2.00 Hrs.

- ▶ L Lectures
- ➤ T Tutorials
- ≻ P Practical
- ≻ C Credits

		Semester - V		
	PAPER –	I: Physical Che	emistry	
Course I	lame: Physical Chemistry (6	0 lectures)	Course Code: SCH50	1
Periods p	er week (1 period 50 minutes)		04	
Credits		_	2.5	
Evaluati	on System		Hours	Marks
Theory Examination Theory Internal		2.0	60	
		Theory Internal		40
Jourse O	bjectives :			
* Т	o introduce various branches of	spectroscopy		
♦ T	o explore further colligative pro	perties in Thermodynan	nics like vapor pressure and	l
0	smotic pressure			
♦ Т	o get acquainted with application	ons of radioisotopes, nuc	elear reactions, fission and	
ft	ision processes.	_		
∻ T	o make learner aware of adsorp	tion phenomena and col	loidal state.	
	1	1		
				No. of
				lectures
Unit I	1.0 Molecular Spectrosco			11
	1.1.1 Introduction to dipole n molecular structure	noment, polarization of a	a bond, bond moment,	
	1.1.2 Vibrational spectrum:			
			of vibration, vibrational	
	spectrum of a diatomic	-		
			ng vibrational spectrum,	
	selection rule, nature of	spectrum.		
	1.1.3 Vibrational-Rotationa	l spectrum of diatomic	molecule	
		-	Im, P and R branch lines.	
	61	, 1	on rule, fundamental band,	
	overtones. Applicati	on of vibrational-ro		
	11		cance. Infrared spectra of	
	11	constant and its signific	1	
	determination of force simple molecules like	constant and its signific	1	
	determination of force simple molecules like 1 1.1.4 Raman Spectroscopy	constant and its signific H_2O and CO_2 .	cance. Infrared spectra of	04
	determination of force simple molecules like I 1.1.4 Raman Spectroscopy Scattering of electrom	constant and its signific H ₂ O and CO ₂ . agnetic radiation, Ray	cance. Infrared spectra of leigh scattering, Raman	04
	determination of force simple molecules like I 1.1.4 Raman Spectroscopy Scattering of electrom scattering, nature of Ra	constant and its signific H ₂ O and CO ₂ . agnetic radiation, Ray man spectrum, Stoke's	cance. Infrared spectra of	04

Unit II	2.0	Chemical Thermodynamics	09
	2.1.1	Recapitulation of entropy. Third law of thermodynamics and its	
		applications	
	2.1.2	Colligative properties	
		Vapor pressure and relative lowering of vapour pressure. Measurement of	
		lowering of vapour pressure – Static and Dynamic method.	
	2.1.3	Solutions of Solid in Liquid	
	2.1.3.	1 Elevation in boiling point of a solution, thermodynamic derivation	
		relating elevation in boiling point of the solution and molar mass of	
		non-volatile solute.	
	2.1.3.	2 Depression in freezing point of a solution, thermodynamic	
		derivation relating the depression in the freezing point of a solution	
		and the molar mass of the non-volatile solute. Beckmann Method.	
	2.1.4	Osmotic Pressure : Introduction, thermodynamic derivation of Van't	
		Hoff equation, Van't Hoff Factor, Reverse Osmosis.	
			06
	2.2	Chemical Kinetics	
	2.2.1	Collision theory of reaction rates :	
		Application of collision theory to	
		1. Unimolecular reaction Lindemann theory and	
		2. Bimolecular reaction. (derivation expected for both)	
	2.2.2	Catalysis	
		Recapitulation of catalysis	
	2.2.3	Mechanisms and kinetics of enzyme catalyzed reactions	
		(Michaelis-Menten equation)	
Unit III	3.0 N	luclear Chemistry	15
	3.1	Introduction: Basic terms-radioactive constants (decay constant, half	
		life and average life) and units of radioactivity	
	3.2 1	Detection and Measurement of Radioactivity:	
	Т	ypes and characteristics of nuclear radiations, behavior of ion pairs in	
	e	lectric field, detection and measurement of nuclear radiations using	
	C	G. M. Counter and Scintillation Counter.	
	3.3 A	Application of use of radioisotopes as Tracers	
		Chemical reaction mechanism, age determination - dating by C^{14} .	
		Nuclear reactions	
	1	Nuclear transmutation (one example for each projectile), artificial	
	ra	adioactivity, Q - value of nuclear reaction, threshold energy.	
	3.5 1	Fission Process	
	I	Fissile and fertile material, nuclear fission, chain reaction, factor	
	0	controlling fission process.multiplication factor and critical size or mass	
	0	of fissionable material, nuclear power reactor and breeder reactor.	
	3.6 1	Fusion Process	
		Thermonuclear reactions occurring on stellar bodies and earth.	

Unit IV	4.1	Surface Chemistry	06
	4.1.1	Adsorption: Physical and Chemical Adsorption, types of adsorption isotherms . Langmuir's adsorption isotherm (Postulates and derivation expected). B.E.T. equation for multilayer adsorption, (derivation not expected). Determination of surface area of an adsorbent using B.E.T. equation.	
	4.2	Colloidal State	09
	4.2.1	Introduction to colloids - Emulsions, Gels and Sols	09
	4.2.2	Electrical Properties	
		Origin of charges on colloidal particles, Concept of electrical double layer, zeta potential, Helmholtz and Stern model. Electro-kinetic phenomena - Electrophoresis, Electro-osmosis, Streaming potential, Sedimentation potential; Donnan Membrane equilibrium	
	4.2.3	Colloidal electrolytes	
		Introduction, micelle formation,	
	4.2.4	Surfactants	
		Classification and applications of surfactants in detergents and food	
		industry.	

Learning Outcomes:

On studying the syllabi the learner will be able to

- 1. Differentiate between various branches of spectroscopy.
- 2. Interpret various thermodynamic properties and their determination
- 3. Explain various aspects of nuclear chemistry
- 4. Elaborate the knowledge of colloidal state, colloidal electrolytes and surfactants.

Reference Books :

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Physical Chemistry, R.J. Silbey, & R.A. Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]
- 4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- 5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- 6. Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- 7. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 8. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.
- 9. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

- 10. Principles of Physical Chemistry B.R. Puri, L.R. Sharma, M.S. Pathania, VISHAL PUBLISHING Company, 2008.
- 11. Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons (Asia) Ple. Ltd., Singapore, 2007.
- 12. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- 13. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan, New Age International (P) Ltd., Publishers, 2011..

14. Chemical Kinetics, K. Laidler, Pearson Education India, 1987

PRACTICALS

SEMESTER - V

PHYSICAL CHEMISTRY

COURSE CODE: SCHP501

CREDITS: 03

RECAPITULATION: Laboratory Safety Practices

Non-Instrumental

1) **Phase rule** : To study phase diagram of three component system water – chloroform/ toluene - acetic acid

2) Chemical Kinetics:

To determine the order between $K_2S_2O_8$ and KI by fractional change method

3) Surface phenomena

To investigate the adsorption of acetic acid on activated charcoal and test the validity of Freundlich adsorption isotherm.

Instrumental

4) Potentiometry

To determine the solubility product and solubility of AgCl potentiometrically using chemical cell.

5) Conductometry

To determine the velocity constant of alkaline hydrolysis of ethyl acetate by conductometric method.

6) pH-metry

To determine acidic and basic dissociation constants of amino acid and hence to calculate isoelectric point.

References:

- 1. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001
- 2. Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005.
- 3. Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill
- 4. Advanced Practical Physical Chemistry J.B.Yadav, Goel Publishing House
- 5. Advanced Experimental Chemistry. Vol-I J.N.Gurtu and R Kapoor, S.Chand and Co.
- 6. Senior Practical Physical Chemistry By: B. D. Khosla, V. C. Garg and A.Gulati, R Chand and Co.. 2011

T. Y. B. Sc. CHEMISTRY (Six Units) : Choice Based Credit System Semester - V **PAPER – II : Inorganic Chemistry Course Name: Inorganic Chemistry** (60 lectures) Course Code: **SCH502** Periods per week (1 period 50 minutes) 04 Credits 2.5 Hours Marks **Evaluation System** Theory Examination 2.0 60 **Theory Internal** 40

Course Objectives :

- It is important for the learner to understand the concept of symmetry elements, symmetry operations and point group as it will be helpful in study of structure of molecules and their properties. The learner is introduced to application of Molecular Orbital Theory to explain certain properties of polyatomic species and band theory for explaining electrical properties of conductors and semiconductors.
- The study of structure of solids and defects in solids will help in understanding physical properties of compounds. Superconductors are of great importance in days to come and hence brief introduction their types and applications is included.
- The learner should understand the consequences of lanthanide contraction, the method of separation of lanthanides and application of lanthanides.
- The learner is introducing with the concept of non aqueous solvents and importance of non aqueous solvents to carry out various chemical reactions.
- Learners are introduce with the concept of allotropy, synthesis and application of H2SO4.
- It is important for the learner to understand the concept of oxy acids, their properties and structure on the basis of VSEPR theory.

			N
			No. of lectures
Unit I	1.0 N	Iolecular Symmetry And Chemical Bonding	
CIIII I	1.0 1	Torecular Symmetry And Chemicar Donaing	06
	1.1	Molecular Symmetry	00
	1.1.1	• •	
		Symmetry elements and symmetry operations	
		Concept of a point group with illustrations using the following	
		int groups :	
	1	i) $C \propto v$ ii) $D \propto h$ iii) C_{2v} iv) C_{3v} v) C_{2h} vi) D_{3h}	
		, , , , , , , , , , , , , , , , , , , ,	06
	1.0		00
	1.2	Molecular Orbital Theory Polyatomic species	
		LCAO –MO for triatomic species : H_3^+ and H_3 (correlation between	
		Bond angle and Molecular orbitals)	
	1.2.2	Molecular orbital approach for bonding in AB ₂ molecules. Application	
		of symmetry concepts for linear and angular species considering	
		σ bonding only. Examples BeH ₂ and H ₂ O	
		(Terms such as Walsh correlation diagram, Symmetry Adapted Linear	
		Combinations (SALC's) Ligand Group Orbitals(LGOs), transformation	
		of atomic orbitals into appropriate symmetry types expected to be	
		discussed.	
	1.3	Metallic bonding : Band theory, Explanation of electrical properties of	03
		conductors, insulators, semiconductors, extrinsic and intrinsic	
		semiconductors.	

Unit II	2.0 Solid State Chemistry.	11
	2.1 Structure Of Solids.	
	2.1.1 Explanation of terms ,viz., crystal lattice , lattice points, unit cells and	
	lattice constants	
	2.1.2 Closest packing of rigid spheres (hcp, ccp), packing density in simple	
	cubic, bcc, fcc and hcp lattices. (Numerical problems expected).	
	Relationship between density of unit cell, lattice parameters (Numerical	
	problems expected).	
	2.1.3 Stoichiometric Point defects in Solids: Discussion on Frenkel and	
	Schottky defects expected.	
	2.2 Superconductivity.	04
	2.2.1 Discovery of Superconductivity	
	2.2.2 Explanations of terms like superconductivity, transition	
	temperature, Meissner effect2.2.3 Different types of Superconductors viz, conventional	
	2.2.3 Different types of Superconductors viz, conventional Superconductors , alkali metal fullerides, High temperature	
	Superconductors , awar metal functions, fright emperature Superconductors	
	2.2.4 Brief applications of superconductors	
Unit III	3.0 Chemistry of Inner Transition Elements	15
	3.1 Introduction: Position in the periodic table and electronic configuration of	
	Lanthanides and actinides.	
	3.2 Chemistry Of Lanthanides with reference to i) Lanthanide contraction	
	and its consequences. ii) Oxidation states, iii) Ability to form complexes	
	iv) Magnetic and spectral properties.	
	3.3 Occurrence Extraction And Separation Of Lanthanides by i) Solvent	
	Extraction ii) Ion exchange method.(Principles and Techniques).	
	3.4 Applications of Lanthanides.	
Unit IV	4.0 Some Selected Topics	05
	4.1 Chemistry Of Non- Aqueous Solvents.	
	4.1.1 Classification of solvents and importance of non aqueous solvents.	
	4.1.2 Characterization and study of liquid ammonia, dinitrogen tetraoxide as	
	non aqueous solvents with respect to :	
	i) Acid base reaction and ii) redox reactions.	
	4.2 Comparative Chemistry of Group 16.	. –
	4.2.1 Electronic configurations, trends in physical properties, allotropy.	05
	Manufacture of sulphuric acid by contact process.Impact of H ₂ SO ₄ on	
	environment.	
	4.3 Comparative Chemistry of Group 17.	
	4.3.1 Electronic configuration, general characteristics, anomalous properties	~ =
	of flourine, comparative study of acidity of oxyacids of chlorine with	05
	respect to acidity, oxidising properties and structures (on the basis of VSEDB theory)	
	VSEPR theory).	

Learning Outcomes:

On studying the syllabi, the learner will be able to

- Discuss the symmetry elements present in a molecule and assign the point group for the molecule. Draw Molecular orbital Diagram of triatomic (AB2) molecules and explain their shapes with the help of Walsh Correlation diagrams
- Discuss electrical properties of conductors, semiconductors on the basis of Band Theory.
- Understand the different types packing in solids , stoichiometric defects in solids
- Discuss superconductivity . types of superconductors and their applications.
- Understand the unusal position of inner transition elements, describe the solvent extraction, ion exchange methods used for seperation of lanthanides and recite the application of lanthanides, deduce the expression in solvent extraction and ion exchange method.
- Discuss the properties of aqueous, non aqueous solvent, protic and aprotic solvent and memorize application of non aqueous solvents
- Write the electronic configuration of group 16 elements, recollect the preparation of H_2SO_4 by contact process, recite application of H_2SO_4 , and understand catalysis in V_2O_5 and platinised asbestos.
- Define interhalogen compounds, draw the structures of different interhalogen compounds and explain their shapes. Analyse the structure of oxy acids on the basis of VSEPR theory and describe the properties of oxy acids.

Références :

- 1. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 2. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993
- 3. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 4. Greenwood, N.N. & Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 5. Gary Wulfsberg, Inorganic chemistry, Viva Books Pvt, Ltd. (2002).
- 6. Purecell, K.F. and Kotz, J.C., Inorganic Chemistry W.B. Saunders Co. 1977
- 7. D.Banerjea, Coordination Chemistry, tata NcGraw Hill, New Delhi, 1993
- 8. Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 9. Basolo, F, & Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 10. R. Gopalan, V. Ramalingam Concise Coordination Chemistry, Vikas Publishing House
- 11. Satya Prakash, G.D.Tuli, R.D. Madan , Advanced Inorganic Chemistry. S. Chand & Co Ltd
- 12. Lesley E. Smart, Elaine A. Moore Solid State Chemistry: An Introduction, 2nd Edition CRC Press,
- 13. C. N. R. Rao Advances in Solid State Chemistry
- 14. Ram Charan Mehrotra, Organometallic Chemistry: A Unified Approach, New Age International

PRACTICALS

SEMESTER - V

INORGANIC CHEMISTRY

COURSE CODE: SCHP501

CREDITS: 03

RECAPITULATION : Laboratory Safety Practices

I. Inorganic preparations and characterization

- Preparation of tris(ethylenediamine) nickel(II) thiosulphate.
 (Estimation of nickel complexometrically)
- 2. Preparation of tetraammine copper(II) sulfate (Estimation of copper iodometrically)
- II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests). (Any three salts of transition metal ions)
- **III.** Estimation of boric caid

Référence Books

- 1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

T. Y. B. Sc. CHEMISTRY (Six Units) : Choice Based Credit System					
	Semester - V				
PAPER – 1	III : Organic Chem	istry			
Course Name: Organic Chemistry	(60 lectures)	Course Code: SC	CH503		
Periods per week (1 period 50 minute	es)	4			
Credits	1	2.5			
Evaluation System	Theory Examination	Hours 2.0	Marks 60		
	Theory Internal	2.0	40		
Course Objectives :					
 To identify the different organic reaction the type of reaction. To introduce students to basic photochem and olefins. To identify the symmetry elements in org cummulenes and biphenyls. To predict the stereochemical outcome o To write the IUPAC nomenclature of giv to a given IUPAC name. To expose the students to the principles of Ultrasound assisted Organic synthesis an To familiarize students with the concept starting compounds To learn about basic concept of UV, IR, determination of organic compounds. 	nistry and photochemical reac ganic compounds and the opti f nucleophilic substitution and ren compound and draw the st of Green Chemistry, Principle d their comparison with conv of retrosynthesis and designir	tions involving carbonyl c cal activity of substituted d electrophilic addition rea ructure of compounds cor and applications of Micro entional methods. ag of organic synthesis fro	compounds actions. responding owave and m simple ructure		
			No. of lectures		
Unit I Mechanism of organic react	ions		10		
electrophiles & nucleop nucleophilicity vs basic 1.1.2 Neighbouring group pa reactions: participation stereochemical outcom 1.1.3 Acyl nucleophilic subst esterification of carbox of esters (BAC2). 1.1.4.1 Pericyclic reactions, cl Electro cyclic reaction sigmatropic Rearrangen	rticipation in nucleophilic s of lone pair of electrons, k ne. Eitution (Tetrahedral mecha ylic acids (AAC2) and bas assification and nomenclatu s (ring opening and ring clo nent, group transfer reaction d one example of each type	hilicity vs. acidity & substitution tinetics and nism): Acid catalyzed e promoted hydrolysis ure osing), cycloaddition, ns, cheletropic			

	1.2 Photochemistry	05
	1.2.1 Introduction: Difference between thermal and photochemical reactions.	
	Jablonski diagram, singlet and triplet states, allowed and forbidden	
	transitions, fate of excited molecules, photosensitization.	
	1.2.2 Photochemical reactions of olefins: photoisomerization, photochemical	
	rearrangement of 1,4- dienes (di- π methane)	
	1.2.3 Photochemistry of carbonyl compounds: Norrish I, Norrish II cleavages.	
	Photo reduction (e.g. benzophenone to benzpinacol)	
Unit II	2.1 Stereochemistry I	07
	2.1.1 Molecular chirality and elements of symmetry: Mirror plane symmetry,	
	inversion center, rotation -reflection (alternating) axis.	
	2.1.2 Chirality of compounds without a stereogenic center: cummulenes and	
	biphenyls.	
	2.2 Stereochemistry II	ΛO
	2.2.1 Stereoselectivity and stereospecificity: Idea of enantioselectivity (ee) and	08
	diastereoselectivity (de), Topicity : enantiotopic and diasterotopic atoms,	
	groups and faces.	
	2.2.2 Stereochemistry of :	
	i) Substitution reactions : SNi (reaction of alcohol with thionyl chloride)	
	ii) Elimination reactions: E2–Base induced dehydrohalogenation of	
	1- bromo -1,2- diphenylpropane.	
	iii) Addition reactions to olefins:	
	a) bromination (electrophilic anti addition)	
	b) syn hydroxylation with OsO4 and $KMnO_4$	
	c) epoxidation followed by hydrolysis.	
Unit III	3.1 IUPAC Nomenclature	04
	IUPAC Systematic nomenclature of the following classes of compounds	
	(including compounds upto two substituents / functional groups):	
	3.1.1 Bicyclic compounds – spiro, fused and bridged (upto 11 carbon atoms) –	
	saturated and unsaturated compounds.	
	3.1.2 Biphenyls	
	3.1.3 Cummulenes with upto 3 double bonds	
	3.1.4 Quinolines and isoquinolines	
	3.2 Synthesis of organic compounds	07
	3.2.1 Introduction: Linear and convergent synthesis, criteria for an ideal	•.
	synthesis, concept of chemo selectivity and regioselectivity with	
	examples, calculation of yields.	
	3.2.2 Multicomponent Synthesis: Mannich reaction and Biginelli reaction.	
	Synthesis with examples (no mechanism)	

Unit III	3.2.3 Green chemistry and synthesis: Introduction: Twelve principles of green	
	chemistry, concept of atom economy and E-factor, calculations and their	
	significance, numerical examples.	
	i) Green reagents: dimethyl carbonate. ii) Green starting materials :	
	D-glucose	
	iii) Green solvents : supercritical CO ₂	
	iv) Green catalysts: Bio catalysts.	
	3.2.4 Introduction to retrosynthesis :	04
	Analysis and synthesis, technical terms: target molecule (TM),	
	retrosynthetic analysis, FGA, FGI, disconnection, synthon and reagent.	
	retrosynthetic analysis of limolene, salbutamol and proparacaine.	
Unit IV	Spectroscopy	15
	4.1 Introduction : Electromagnetic spectrum, units of wavelength and frequency	
	4.2 UV visible spectroscopy: Basic theory, allowed and forbidden transitions,	
	selection Rule, concept of chromophore, auxochrome, bathochromic and	
	hypsochromic shifts, hyperchromic and hypochromic effects, chromophore-	
	chromophore interactions and chromophore -auxochrome interactions;	
	Woodward Fieser Rules for calculation of λ_{max} of simple polyenes.	
	4.3 IR spectroscopy: Basic theory, selection rule, fingerprint region and	
	functional group region, characteristic IR peaks for different functional	
	groups.	
	4.4 PMR spectroscopy: Basic theory of PMR, Internal standard , solvents	
	chemical shift, factors affecting chemical shift, spin -sin coupling and	
	coupling constant, exchangeable protons, application of PMR in structure	
	determination.	
	4.5 Mass spectrometry : Basic theory,, molecular ion peak and base peak and	
	their importance, isotopic peaks, Nitrogen rule, rule of 13 for determination	
	of empirical formula and molecular formula, fragmentation of alkanes,	
	alkenes and aliphatic carbonyl compounds including McLafferty	
	rearrangement.	
	4.6 Problems of structure elucidation of simple organic compounds using	
	individual or combined use of UV-VIS, IR, PMR and Mass spectral data.	

Learning Outcomes:

After completing the course, the student should be able to;

- Explain electrophilicity & nucleophilicity and distinguish them from acidity and basicity.
- ✤ Write the mechanism and products of nucleophilic substitution reactions involving NGP
- ✤ Write the mechanism and product of nucleophilic substitution of acid derivatives
- ✤ Identify and classify a pericyclic reaction
- Predict the mechanism and product of pyrolytic elimination reactions

- Explain and discuss theories for photoinduced electron transfer and excitation energy transfer,
- Explain the mechanisms of common photochemical transformations.
- Predict symmetry elements of organic compound, optical activity of cumulenes and biphenyls.
- Predict the mechanism and stereochemical outcome of nucleophilic substitution reactions and electrophilic addition reactions..
- Write correct IUPAC name and structure of organic compounds including heterocyclic compounds.
- Design synthesis of organic compounds by retrosynthetic analysis.
- Determine the structure of organic compounds by analyzing their spectral data.

Suggested Reading :

- 1. A guidebook to mechanism in Organic Chemistry, 6th edition, Peter Sykes, Pearson education, New Delhi
- 2. Organic Reaction Mechanism, 4th edition, V. K. Ahluwalia, R. K. Parashar, Narosa Publication.
- 3. Organic reactions & their mechanisms,3rd revised edition, P.S. Kalsi, New Age International Publishers.
- 4. M. B. Smith and J. March, Advanced organic chemistry- reactions mechanism and structure, 5th edition.
- 5. Organic Chemistry, 7th Edition, R.T. Morrison, R. N. Boyd & S. K. Bhattacharjee, Pearson.
- 6. Organic chemistry,8th edition, John Mc Murry
- 7. L. Eliel, stereochemistry of carbon compounds, Tata McGraw Hill
- 8. Stereochemistry P.S.Kalsi, New Age International Ltd.,4th Edition
- 9. Stereochemistry by Nassipuri.
- 10. Nomenclature of Organic Chemistry: IUPAC recommendations and preferred Names 2013, RSC publication.
- 11. IUPAC nomenclature by S. C. Pal.
- 12. Green chemistry an introductory text : Mike Lancaster
- 13. Green chemistry: V. K. Ahluwalia (Narosa publishing house pvt. ltd.)
- 14. Green chemistry: V. K. Ahluwalia (Narosa publishing house pvt. ltd.)
- 15. Green chemistry an introductory text : RSC publishing.
- 16. New trends in green chemistry V. K. Ahluwalia , M. Kidwai, Klumer Academic publisher
- 17. Green chemistry by V. Kumar.
- 18. Organic chemistry: Francis Carey
- 19. Organic chemistry: Carey and Sundberg.
- 20. Organic Synthesis: The Disconnection Approach 2nd Edition, Wiley, by Stuart Warren, Paul Wyatt
- 21. Organic spectroscopy (Second edition), Jag Mohan , Narosa publication
- 22. Spectroscopy, Pavia, Lampman, Kriz, Vyvyan.
- 23. Elementary organic spectroscopy (Third edition), Y.R.Sharma, S.Chand publication..
- 24. Introduction to spectroscopy (third edition), Pavia ,Lampman,Kriz,john vondeling,Emily Barrosse.
- 25. Organic chemistry Paula Y. Bruice, Pearson education.
- 26. Spectral identification of organic molecules by Silverstein.
- 27. Absorption spectroscopy of organic molecules by V.M.Parikh.

PRACTICALS

SEMESTER V

ORGANIC CHEMISTRY

COURSE CODE: SCHP502

CREDITS: 03

<u>RECAPITULATION</u>: Laboratory Safety Practices

SEMESTER V: Separation of Binary solid-solid mixture (2.0 gms mixture to be given).

- > Minimum Six mixtures to be completed by the students.
- Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (2-naphthol, 1-naphthol), water insoluble bases (nitroanilines), water soluble neutral (thiourea) and water insoluble neutral compounds (anilides, amides, m-DNB, hydrocarbons)
- After correct determination of chemical type, the separating reagent should be decided by the student for separation.
- > Follow separation scheme with the bulk sample of binary mixture.
- After separation into component A and component B, one component (decided by the examiner) is to be analyzed and identified with m.p..

References: 1. Practical organic chemistry – A. I. Vogel

- 2. Practical organic chemistry H.Middleton.
- 3. Practical organic chemistry O.P.Aggarwal.

	T. Y. B. Sc. CHEMISTRY	Y (Six Units) : Choice Bas	sed Credit System	m
		Semester - V		
	PAPER – IV	7 : Analytical Chemis	stry	
Course	Name: Analytical Chemistr	cy (60 lectures)	Course Code: SC	H504
Periods p	er week (1 period 50 minutes)		4	
Credits			2.5	
E	C		Hours	Marks
Evaluat	ion System	Theory Examination	2.0	60
~		Theory Internal		40
The prim analytical analytical of the ana * To i * To e * To p	Objectives : ary objective of this course is to acc chemistry that would empower stu- problems in an efficient and quanti- alytical results. On successful comp- ntroduce basic analytical techniques establish an appreciation of the role provide an understanding of chemica provide experience in some scientifi	dents with an analytical mind set itative way that conveys the impor- letion of this course, students will s and practical aspects of classical of chemistry in quantitative analys al methods employed for elementa c methods employed in analytical	and the abilities to sol- rtance of accuracy and be able chemical analysis. sis al and compound analy chemistry.	ve diverse precision
UNITI		ncepts, Chemical Calculation	s And Sampling	
	1.1 Quality in Analytical Che	emistry		05
	1.1.1 Concepts of Quality, Qua	lity Control and Quality Assura	ance	
	1.1.2 Importance of Quality co			
	1.1.3 Chemical Standards and	Certified Reference Materials;	Importance in	
	chemical analysis			
		ous grades of laboratory reager		
	1.2 Chemical Calculations (N	-	ns are expected)	04
	1.2.1 Inter conversion of variou			
	, ,	ion from one unit to another un	1 /	
	1.2.2 Percent composition of el	ements in chemical compounds	S	
	1.3 Sampling			06
	1.3.1 Purpose, significance and	difficulties encountered in san	npling	
	1.3.2 Sampling of solids: Samp	ele size – bulk ratio, size to wei	ght ratio, multistage	
	and sequential sampling, size	reduction methods, sampling of	of compact solids,	
	equipments and methods of s	ampling of compact solids, sar	npling of	
	• •	nd equipments used for samplin		
	solids.	a equipments used for samplin	5 of purilounate	
		aganoons and hotomorphones i	Static and flowing	
	1.3.3 Sampling of liquids: Hom liquids.		-	
	1.3.4 Sampling of gases: Ambigampling of gases.	ent and stack sampling: Appara	atus and methods for	
	1.3.5 Collection, preservation an	nd dissolution of the sample.		

UNIT I	II: CL	ASSICAL METHODS OF ANALYSIS (TITRIMETRY)	
2.1	Redox	Titrations (Numerical and word Problems are expected)	08
	2.1.1	Introduction	
	2.1.2	Construction of the titration curves and calculation of E _{system} in aqueous medium in case of: (1) One electron system (2) Multielectron system	
	2.1.3	Theory of redox indicators, Criteria for selection of an indicator Use of diphenyl amine and ferroin as redox indicators	
2.2	Comple	exometric Titrations	07
	2.2.1	Introduction, construction of titration curve	
	2.2.2	Use of EDTA as titrant and its standardisation, absolute and conditional formation constants of metal EDTA complexes, Selectivity of EDTA as a titrant. Factors enhancing selectivity with examples. Advantages and limitations of EDTA as a titrant.	
	2.2.3	Types of EDTA titrations.	
	2.2.4	Metallochromic indicators, theory, examples and applications	
UNIT	III: OPTI	CAL METHODS	
3.1	Atomic	Spectroscopy: Flame Emission spectroscopy(FES) and Atomic Absorption Spectroscopy(AAS)	07
	3.1.1	Introduction, Energy level diagrams, Atomic spectra, Absorption and Emission Spectra	
	3.1.2	Flame Photometry – Principle, Instrumentation (Flame atomizers, types of Burners, Wavelength selectors, Detectors)	
	3.1.3	Atomic Absorption Spectroscopy – Principle, Instrumentation (Source, Chopper, Flame and Electrothermal Atomiser)	
	3.1.4	Quantification methods of FES and AAS – Calibration curve method, Standard addition method and Internal standard method.	
	3.1.5	Comparison between FES and AAS	
	3.1.6	Applications, Advantages and Limitations	
3.2	Molecu	lar Fluorescence and Phosphorescence Spectroscopy	04
	3.2.1	Introduction and Principle	
	3.2.2	Relationship of Fluorescence intensity with concentration	
	3.2.3	Factors affecting Fluorescence and Phosphorescence	
	3.2.4	Instrumentation and applications	
	3.2.5	Comparison of Fluorimetry and Phosphorimetry	

	3.2.6	Comparison with Absorption methods	
3.3	Turbidi	metry and Nephelometry	04
	3.3.1	Introduction and Principle	
	3.3.2	Factors affecting scattering of Radiation:	
		Concentration, particle size, wavelength, refractive index	
	3.3.3	Instrumentation and Applications	
UNIT I	V: ME	THODS OF SEPARATION	
4.1	Solvent	Extraction	06
	4.1.1	Factors affecting extraction: Chelation, Ion pair formation and	
		Solvation	
	4.1.2	Graph of percent extraction versus pH.	
		Concept of [pH] _{1/2} and its significance (derivation not expected)	
	4.1.3	Craig's counter current extraction: Principle, apparatus and	
		applications	
	4.1.4	Solid phase extraction: Principle, process and applications with	
		special reference to water and industrial effluent analysis.	
	4.1.5	Comparison of solid phase extraction and solvent extraction.	
4.2	High Pe	erformance Liquid chromatography (HPLC)	06
	4.2.1	Introduction and Principle	
		Instrumentation- components with their significance: Solvent	
		Reservoir, Degassing system, Pumps-(reciprocating pumps, screw	
		driven- syringe type pumps, pneumatic pumps, advantages and	
		disadvantages of each pump), Precolumn, Sample injection system,	
		HPLC Columns, Detectors(UV – Visible detector, Refractive index	
		detector)	_
	4.2.2	Qualitative and Quantitative Applications of HPLC	
4.3	High Pe	erformance Thin Layer Chromatography (HPTLC)	03
	4.3.1	Introduction and Principle	
		Stationary phase, Sample application and mobile phase	
	4.3.2	Detectors	
		a) Scanning densitometer- Components.	
		Types of densitometer- Single beam and Double beam	
		b) Fluorometric Detector	
	4.3.3	Advantages, disadvantages and applications	
	4.3.4	Comparison of TLC and HPTLC	

Learning Outcomes

At the end of this course, the student will know

- 1. Perceive sound theoretical knowledge and understanding of the fundamental concepts, principles and processes in Analytical Chemistry.
- 2. Discuss the applications of Advanced Instrumental methods.
- 3. Solve practical problems and will be able to apply the skills learnt in the programme.
- 4. Outline the applications of Analytical methods in everyday life.

References:

1.	3000 solved problems in Chemistry, David E. Goldberg,PhD.,Schaums Outline	Unit/s: (1.2)
2.	A guide to Quality in Analytical Chemistry: An aid to accreditation, CITAC and EURACHEM, (2002),	Unit/s (1.1)
3.	A premier sampling solids, liquids and gases, Smith Patricia I, American statistical association and the society for industrial and applied mathematics, (2001)	Unit/s (1.3)
4.	Analytical Chemistry, Gary.D Christan, 5th edition	Unit/s (4.1,4.2,4.3)
5.	Analytical Chemistry Skoog, West ,Holler,7th Edition:	Unit/s (2.1)
6.	Analytical Chromatography, Gurdeep R Chatwal, Himalaya publication	Unit/s (4.1,4.2,4.3)
7.	Basic Concepts of Analytical Chemistry, by S M Khopkar, new Age International (p) Limited	Unit/s (4.1,4.2,4.3)
8.	Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969	Unit (4.1,4.2,4.3) /s
9.	Fundamentals of Analytical Chemistry by Skoog and West, 8th Edition	Unit (4.1,4.2,4.3) /s
10.	Handbook of quality assurance for the analytical chemistry laboratory, 2ndEdn., James P. DuxVanNostr and Reinhold, 1990	Unit (1.1) /s
11.	High Performance Thin Layer Chromatography by Dr P.D. Sethi, CBS Publisher and Distribution	Unit/s(4.1,4.2,4.3)
12.	High Performance Thin Layer Chromatography in Food analysis, by Prem kumar, CBS Publisher and distributer	Unit/s (4.1,4.2,4.3)
13.	Instrumental methods of Analysis, by Dr Supriya S	Unit/s (4.1,4.2,4.3)
	Mahajan, Popular Prakashan Ltd	
14.	Instrumental methods Of Analysis, by Willard Merritt Dean, 7thEdition, CBS Publisher and distribution Pvt Ltd	Unit/s (3.1,3.2,3.3)
15.	Instrumental Methods of Chemical Analysis by B.K. Sharma	
	Goel Publishing House	Unit/s (4.1,4.2,4.3)

16.	Principles of Instrumental Analysis , 5th Edition, By Skoog, Holler, Nieman	Unit/s (4.1,4.2,4.3
17.	Quality control and Quality assurance in Analytical Chemical Laboratory, Piotr Konieczka and Jacek Namiesnik, CRC press	Unit/s (1.1)
18.	Quality in the Analytical Chemistry Laboratory, Elizabeth Prichard, Neil T. Crosby, Florence Elizabeth Prichard, John Wiley and Sons, 1995	Unit/s (1.1)
19.	Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969	Unit/s (4.1,4.2,4.3)
20	Thin Layer Chromatography, A LAB. Handbook, Egon Stahl, Springer International Student Edition	Unit/s (4.1,4.2,4.3)

PRACTICALS

SEMESTER V

ANALYTICAL CHEMISTRY

CREDITS: 03

COURSE CODE: SCHP502

REACPITULATION: Laboratory Safety Practices

- 1. Spectrophotometric estimation of fluoride
- 2 Estimation of magnesium content in Talcum powder by complexometry, using standardized solution of EDTA
- 3 Determination of COD of water sample.
- 4 To determine potassium content of a Fertilizer by Flame Photometry (Calibration curve method).
- 5 To determine the amount of persulphate in the given sample solution by back titration with standard Fe (II) ammonium sulphate solution.
- 6 To determine the amount of sulphate in given water sample turbidimetrically.

Note: Calculation of percent error is expected for all the experiments.

<u>References</u>

- 1. Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J Memdham and R C Denney, ELBS with Longmann (1989).
- 2. Vogel's Textbook of Quantitative Chemical analysis, Sixth edition, J.Mendham et.al

	S	Semester - VI		
	PAPER – 1	I : Physical Che	mistry	
Course	Name: Physical Chemistry (60) lectures)	Course Code: SCH6	01
Periods p	er week (1 period 50 minutes)		4	
Credits			2.5	
Evaluat	ion System	Theory Examination Theory Internal	Hours 2.0	Marks 60 40
 To and To and 	ntroduce classification of polyme know basics of quantum chemistr eigen vaules be aware of renewable energy sou get basics of Nuclear Magnetic re	y, concepts of progress	sive and standing waves, op	erators
Unit I	-	strength, Mean ionic an electrolyte, expr	activity and mean ionic ression for activities of derivation).	No. of lectures 07
	Chemical cells and Con	l without transference, ntration cells with and v d), ry ion polarization and it's al and Overvoltage: In on of decomposition pe potential. Tafel's equat	s elimination troduction, otential, factors tion for hydrogen	08
Unit II	 2.0 Polymers 2.1 Basic terms : macromolect polymerization. 2.2 Classification of polymer thermal response and phy 2.3 Molar masses of polyme average molar mass, Mono 	ule, monomer, repeat u rs: Classification based ysical properties. rs: Number average, V	on source, structure, Veight average, Viscosity	15

	and deuterium.	
	electron g-factor, hyperfine splitting. Instrumentation: ESR spectrometer, ESR spectrum of hydrogen	
	Principle: Fundamental equation, g-value -dimensionless constant or	
	Instrumentation: NMR Spectrometer 4.2 Electron Spin Resonance Spectroscopy	08
	relaxation and spin - lattice relaxation).	
	levels, Larmor precession, Relaxation processes in NMR (spin -spin	
	4.1 Nink -Nuclear Magnetic Resonance Spectroscopy Principle : Nuclear spin, magnetic moment, nuclear 'g' factor, energy	0/
Unit IV	 water, advantages of hydrogen as a universal energy medium. 4.1 NMR -Nuclear Magnetic Resonance Spectroscopy 	07
	Fuel of the future, production of hydrogen by direct electrolysis of	
	energy converters, Silicon solar cell 3.2.3 Hydrogen	
	semiconductors, insulators and its band gap, Semiconductors as solar	
	Solar cells, Photovoltaic effect, Differences between conductors,	
	3.2.2 Solar energy	
	3.2 Renewable Energy Resources3.2.1 Renewable energy resources: Introduction.	05
	Eigen function and Eigen value.	
	non - commutative operators, linear operator, Hamiltonian operator,	
	addition, subtraction and multiplication of operators, commutative and	
	3.1.4 Quantum mechanics State function and its significance, Concept of operators - definition,	
	expected), interpretation and properties of wave function.	
	Schrodinger's time independent wave equation (no derivation	
	3.1.3 Progressive and standing waves- Introduction, boundary conditions,	
	wave particle duality, de –Broglie's equation, Heisenberg's uncertainty principle.	
	3.1.2 Quantum mechanics : Introduction, Planck's theory of quantization,	
	Black body radiation, photoelectric effect, Compton effect.	
	3.1.1 Classical mechanics : Introduction, limitations of classical mechanics,	10
Unit III	3.1 Basics of Quantum Chemistry	10
	Colourants, Antistatic agents and Curing agents.	
	2.6 Antioxidants and Stabilizers : Antioxidants , Ultraviolet stabilizers,	
	Method of preparation and applications.	
	Viscosity method using Ostwald Viscometer. (derivation expected)2.5 Light Emitting Polymers : Introduction, Characteristics,	
	2.4 Method of determining molar masses of polymers :	

*Note : Numericals and Word Problems are Expected from All Units

Learning Outcomes

On studying the syllabi, the learner will be able to

- 1. Classify polymers and determine their various types of molar masses.
- 2. Outline the basics of quantum Chemistry and interpret the Schrodinger time-independent wave equation
- 3. Recognise importance of solar Cellsexplore the utility of hydrogen as a fuel.
- 4. Compare the basic concepts of Nuclear Magnetic Resonance with electron spin resonance spectroscopy.

Reference Books :

1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.

- 2. Physical Chemistry, P.C. Rakshit, 6th Edition, 2001, Sarat Book Distributors, Kolkota.
- 3. Physical Chemistry, R.J.Silbey, & R.A.Alberty, 3rd edition, John Wiley & Sons, Inc [part 1]
- 4. Physical Chemistry, G. Castellan, 3rd edition, 5th Reprint, 1995 Narosa Publishing House.
- 5. Modern Electrochemistry, J.O.M Bockris & A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- 6. Fundamental of Molecular Spectroscopy, 4th Edn., Colin N Banwell and Elaine M McCash Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008.
- 7. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 8. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford University Press Oxford.
- 9. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.
- 10. Principles of Physical Chemistry B.R. Puri, L.R. Sharma, M.S. Pathania, Vishal Publishing Company, 2008.
- 11. Textbook of Polymer Science, Fred W Bilmeyer, John Wiley & Sons (Asia) Ple. Ltd., Singapore, 2007.
- 12. Polymer Science, V.R. Gowariker, N.V. Viswanathan, Jayadev Sreedhar, New Age International (P) Ltd., Publishers, 2005.
- 13. Essentials of Nuclear Chemistry, Arnikar, Hari Jeevan , New Age International (P) Ltd., Publishers, 2011..
- 14. Chemical Kinetics, K. Laidler, Pearson Education India, 1987.

PRACTICALS SEMESTER - VI PHYSICAL CHEMISTRY

COURSE CODE: SCHP601

CREDITS: 03

Non-Instrumental

Chemical Kinetics

To interpret the order of reaction graphically from the given experimental data and calculate the specific rate constant. (No fractional order)

Viscosity

To determine the molecular weight of high polymer polyvinyl alcohol (PVA) by viscosity measurement.

Instrumental

Potentiometry

- 1. To determine the amount of iodide, bromide and chloride in the mixture by potentiometric titration with silver nitrate.
- 2. To determine the number of electrons in the redox reaction between ferrous ammonium sulphate and cerric sulphate potentiometrically.

Conductometry

To titrate a mixture of weak acid and strong acid against strong base and estimate the amount of each acid in the mixture conductometrically.

Colorimetry

To estimate the amount of Fe(III) in the complex formation with salicylic acid by Static Method.

References

- 1. Practical Physical Chemistry 3rd edition A.M.James and F.E. Prichard, Longman publication
- 2. Experiments in Physical Chemistry R.C. Das and B. Behra, Tata Mc Graw Hill
- 3. Advanced Practical Physical Chemistry J.B.Yadav, Goel Publishing House
- 4. Advanced Experimental Chemistry. Vol I J.N.Gurtu and R Kapoor, S. Chand and Co.
- 5. Experimental Physical Chemistry By V.D.Athawale.
- Senior Practical Physical Chemistry By: B. D. Khosla, V. C. Garg and A. Gulati, R Chand and Co.. 2011

T. Y. B. Sc. CHEMISTRY (Six Units) : Choice Based Credit System Semester - VI **PAPER – II : Inorganic Chemistry Course Name: Inorganic Chemistry** (60 lectures) **Course Code: SCH602** Periods per week (1 period 50 minutes) 04 Credits 2.5 Hours Marks **Evaluation System Theory Examination** 2.0 60 **Theory Internal** 40

Course Objectives :

- The learner is introduced to basic tenets of Crystal Field theory and its application to explain variation in properties of coordination compounds. Experimental evidences suggesting covalence in metal -ligand bond will be discussed. Also, the application of Molecular Orbital Theory to explain properties of octahedral complexes is included in the syllabus.
- ✤ An understanding of stability, reactivity and Electronic spectra of metal complexes will help learner to discuss the properties of the metal complexes.
- The learner is introduced to the concept of synthesis and application of organometallic compounds and Sandwich type of compounds. Also the structure and bonding of ferrocenes on the basis of VBT and homogeneous catalysis with the example of Wilkinson's catalyst in hydrogenation of alkenes.
- Learners are introduced to the concept of compounds of Xenon with respect to preparation and structure (VSEPR) ,applications. Also the concept of nano materials with synthesis and application. They were introducing to the role of inorganic elements in biological system along with the sodium and potassium pump.

			No. of lectures
Unit I	1.0	Theories of Metal Ligand Bond.	10
	1.1	Crystal field Theory (CFT) for coordination compounds	
	1.1.1	Basic tenents of CFT	
	1.1.2	Effect of crystal field on d orbitals in octahedral, square planar and	
	1.1.4 1.1.5	tetrahedral complexes. Distortions from octahedral geometry : Jahn teller Distortions Crystal field splitting parameter 10 Dq / Δ , its calculation and factors affecting it in octahedral complex, Spectrochemical series. Crystal Field Stabilazation Eergy (CFSE), calculation of CFSE for octahedral and tetrahedral complexes d ⁰ · d ¹⁰ metal ion configurations. Consequences of crystal field splitting on various properties such as ionic radii, hydration energy ,lattice energy, colour and magnetic properties	
	1.1.7	Limitations of CFT : Evidences for covalence in metal complexes: i) intensities of d-d transitions , ii) ESR spectrum [Ir Cl ₆] ²⁻ iii) Nephelauxetic effect	05
	1 .2 1 .2.	Molecular Orbital theory for Coordination Compounds 1 Identification of central metal orbitals and their symmetry suitable for formation of σ and π bonds with ligand orbitals.	

	1 2 2	Construction of Ligand Group orbitals	
		Construction of Ligand Group orbitals	
		Construction of σ Molecular orbitals for ML ₆ complexes.	
		Effect of π bonding on Δ values	
	1.2.5	Molecular Orbital diagram for complexes : $[Ti(H_2 O)_6]^{+3} [Fe(CN)_6]^{-3}$,	
		$[Fe (F)_6]^{-3}$, $[Fe (CN)_6]^{-4}$, $[Fe (F)_6]^{-4}$, $[Co(NH_3)_6]^{+3}$, $[Co(F)_6]^{-3}$	
Unit II	2.0	Properties of complexes	05
	2.1	Stability of Metal Complexes	
		Thermodynamic and Kinetic Stability of metal complexes	
	2.1.2	Stability constants : Stepwise and overall stability constants and their	
		Interrelationship	
	2.1.3	Factors affecting thermodynamic stability : nature of metal, nature of	
		ligand, Chelate effect	
			05
	2.2 F	Reactivity of Metal Complexes.	
	221	Types of reactions in metal complexes	
		Inert and Labile complexes: Correlation between electronic	
	2.2.2	_	
		configurations and lability of complexes.	
	2.2.3	Ligand substitution reactions : Associative and Dissociative	
		mechanisms.	
	2.2.4	Acid hydrolysis, base hydrolysis and anation reaction.	05
	2.3	Electronic Spectra.	05
	2.3.1	Origin of electronic spectrum	
		Types of electronic transitions in coordination compounds; Intrametal,	
		intraligand, charge transfer.	
	233	Selection rules for electronic transitions.	
		Electronic configuration and electronic microstates, Terms and Term	
	2.3.4	-	
		symbols for transition metal ions, rules for determination of ground state	
		Terms.	
		Determination of Terms for p^2 and d^2 electronic configurations.	
		Orgel Diagram for D and F Terms (in octahederal crystal field)	
Unit III	3.0 (Organo Metallic Chemistry.	07
	3.1	Organo metallic Compounds Of Main Group Metals.	
	3.1.1	General Characteristics of various types of organometallic compounds	
		i.e. ionic, σ - bonded and electron deficient compounds.	
	3.1.2	General Synthetic methods of organometallic compounds:	
		i) Oxidative addition ii) Metal- metal exchange reaction (trans-	
		metallation), iii) Carbanion- halide exchange, iv) Metal hydrogen	
		exchange (metallation) and v) Methylene insertion reactions.	
	3.1.3	Some chemical reactions of organometallic compounds:	
		i)Reactions with oxygen and halogens,	
		ii) Alkylations and arylations iii) Reactions with protic reagents,	
		iv) Redistributions reactions and v) Complex formation reactions.	
1	1		

	3.2 Metallocenes	03
	Introductions, Ferrocene: Synthesis, properties, structure and bonding on	
	the basis of VBT.	
	3.3 Catalysis.	05
	3.3.1 Comparison between homogeneous and heterogeneous catalysis.	
	3.3.2 Basic steps involved in catalysis reactions	
	i) Oxidative addition ii) Reductive elimination iii) Insertion reaction	
	iv)Application of EAN rule/ 18 electron rule. 3.3.3 Catalytic Reactions	
	i) Wilkinson	
	ii) Suzuki Coupling	
	iii) Heck Reactions.	
Unit IV	4.0 Some Selected Topics.	07
	4.1 Chemistry of Group 18.	
	4.1.1 Historical perspectives.	
	4.1.2 General Characteristics and trends in physical and chemical properties.	
	4.1.3 Isolation of noble gases.	
	4.1.4 Compounds of Xenon (Oxides and Flourides) with respect to	
	preparation and structure (VSEPR).	
	4.1.5 Uses of noble gases.	
	4.2 Nanomaterials	05
	4.2.1 Introduction and importance of nanomaterials.	
	4.2.2 Properties (Comparison between bulk and nanomaterials):	
	i) Optical properties ii) Electrical conductivity iii) Melting points, and iv) Mechanical properties.	
	4.2.3 Forms of nanomaterials: nanofilms, nanolayers, nanotubes, nanowires and nano particles.	
	4.2.4 Synthesis of nanoparticles using colloidal route.	
	4.3 Introduction To Bio- Inorganic Chemistry.	03
	4.3.1 Essential and non- essential elements in biological systems.	
	4.3.2 Biological importance of metal ions such as Na^+ , K^+ , Fe^{2+} / Fe^{3+} and Cu^{2+}	
	(Role of Na^+ and K^+ with respect to ion pump.)	

Learning Outcomes

On studying the syllabi, the learner will be able to:

- Explain observed variation in properties like color, magnetic moment etc, distortion in geometry of octahedral complexes on the basis of Crystal Field Theory ,
- Calculate CFSE for tetrahedral and octahedral complexes
- Draw Molecular Orbital diagram of octahedral complexes and explain variation in properties.
- Differentiate between Thermodynamic and Kinetic Stability, discuss factors affecting thermodynamic stabilities
- Understand terms labile and inert complexes and discuss different mechanisms of substitution reactions metal complexes
- Determine terms, term symbols and draw Orgel Diagrams for metal complexes.
- Understand organometallic compounds, recognize different methods used in the synthesis of organometallic compounds,

- Define sandwich type of compounds, write the structure of ferrocene, recollect thepreparation of ferrocene
- Write the electronic configuration of group 18 elements, draw the structure of Xenon compounds and understand methods of preparation of Xenon.
- Distinguish between homogeneous and heterogeneous catalysis, understand the mechanisam of catalysis, write mechanism of Wilkionson's catalyst in hydrogenetion of alkenes.
- Define nanomaterial, write different methods of synthesis of nanomaterial, recite application of nanomaterials
- Explain the role of inorganic elements applied to biological system, Understand sodium pump, potassium pump, distinguish between essential and non essential elements.

.....

References:

- 1. Geoffrey A. Lawrance Introduction to Coordination Chemistry John Wiley & Sons.
- 2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
- 3. R. Gopalan, V. Ramalingam Concise Coordination Chemistry, Vikas Publishing House;
- 4. Shukla P R, Advance Coordination Chemistry, Himalaya Publishing House
- 5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole
- 6. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
- 7. Basolo, F, & Pearson, R.C, Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY,
- 8. Twigg ,Mechanisms of Inorganic and Organometallic Reactions Publisher: Springer
- 9. R.K. Sharma Inorganic Reaction Mechanisms Discovery Publishing House
- 10. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition..
- 11. H.W. Porterfield, Inorganic Chemistry, Second Edition, Academic Press, 2005
- 12. B D Gupta & Anil J Elias Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University press
- 13. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press India.
- 14. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press
- 15. Cotton, Wilkinson, Murillo and Bochmann, Advanced Inorganic Chemistry, 6th Edition.
- 16. Jack Barrett and Mounir A Malati, Fundamentals of Inorganic Chemistry, Affiliated East west Press Pvt. Ltd., New Delhi.
- 17. Puri ,Sharma Kalia Inorganic chemistry. Chapter 10, Metals and metallurgy.(328-339)
- 18. Greenwood, N.N. and Earnshaw, Chemistry of the Elements, Butterworth Heinemann. 1997.
- 19. Huheey, J.E., Inorganic Chemistry, Prentice Hall, 1993.
- 20. Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994.
- 21. Satya Prakash, G.D.Tuli, R.D. Madan , , Advanced Inorganic Chemistry.S. Chand Co Ltd

PRACTICALS

SEMESTER - VI

INORGANIC CHEMISTRY

COURSE CODE: SCHP601

CREDITS: 03

I. Inorganic preparations

- 1. Preparation of Tris(acetylacetonato) iron(III)
- 2. Green synthesis of bis(dimethylglyoximato) nickel(II) complex using nickel carbonate and sodium salt of dmg.
- 3. Preparation of potassium trioxalato aluminate (III)
- **II.** Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests). (Any three salts of main group metal ions)

III. Estimation of talcum powder

Référence:

- 1. Vogel Textbook of Quantitative Chemical Analysis G.H. Jeffery, J. Basset.
- Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur & Sons Pvt Ltd.
- 3. Vogel's. Textbook of. Macro and Semimicro qualitative inorganic analysis. Fifth edition.

T. Y. B. Sc. CHEMISTRY (Six Units) : Choice Based Credit System

		Semester - VI			
PAPER – III : Organic Chemistry					
Course	Name: Organic Chem	istry (60 lectures)	Course Code: SC	CH603	
Periods p	per week (1 period 50 minutes)	04		
Credits			2.5		
F	ion Sustan		Hours	Marks	
Evaluat	ion System	Theory Examination	2.0	60	
		Theory Internal		40	
,phys ★ To id ★ To id deter ★ To for (inclusion) ★ To le	sical and chemical properties of lentify and classify terpenoids, of lentify alkaloids and the different mination of nicotine and unders ocus on the synthesis, structure a uding Grignard reagents, organo earn the mechanism of reactions	•	ation of alkaloids; structure ogical action ivity of main group organo npounds) lications	e	
				No. of lecture	
Unit I	 1.1.2 Pyridine N-Oxide : p 1.1.3 Quinoline : Preparat with electrophiles an 1.1.4 Isoquinoline : Preparat 	synthesis ; basicity ; reduction preparation, electrophilic and r ion by Skraup synthesis and re	aucleophilic reactions eactions of quinoline	08	
	1.2 Amino acids, proteir 1.2.1 α - Amino acids , ge		classification based on	07	
	and Gabriel phthalin 1.2.2 Polypeptides and pro- representation of pol Proteins : general ide	n; isoelectric point, preparation	n by Strecker synthesis , nomenclature and ase peptide synthesis, ertiary structure of		
	and Gabriel phthalin 1.2.2 Polypeptides and pro- representation of pol Proteins : general ide proteins, Sanger's re	n; isoelectric point, preparation mide synthesis oteins :Nature of peptide bond lypeptides , Merrifield solid ph ea of primary, secondary and t	n by Strecker synthesis nomenclature and ase peptide synthesis, ertiary structure of e in proteins		
	 and Gabriel phthalin 1.2.2 Polypeptides and proceeding of polypeptides and proceeding of polypertation of polyproteins is general identified proteins, Sanger's restriction 1.2.3 Nucleic acids : General 	n; isoelectric point, preparation mide synthesis pteins :Nature of peptide bond lypeptides , Merrifield solid ph ea of primary, secondary and t eagent for amino acid sequence	n by Strecker synthesis nomenclature and ase peptide synthesis, ertiary structure of e in proteins eleotides structure of		

Unit II	2.1	Molecular rearrangements :	05
		Mechanism of the following rearrangements with examples and	
		stereochemistry wherever applicable	
	2.1.1	Wagner Meerwein rearrangement	
	2.1.2	Pinacol-pinacolone rearrangement	
	2.1.3	Beckman rearrangement	
	2.1.4	Favorskii rearrangement	
	2.1.5	Baeyer Villiger Oxidation	
	2.2 (Carbohydrates	10
	2.2.1	Introduction : Classification, reducing and non reducing sugars, D/L	
		notation	
	2.2.2	Structures of mono saccharides : Fischer projection (4-6 carbon mono-	
		saccharides), Haworth formula (Furanose and pyranose forms), Chair	
		conformation for monosaccharides with six carbon atoms,	
		Interconversion of different forms ; Anomers , stability of anomers	
		epimers	
	2.2.3	Mutarotation and its mechanism	
		Chain lengthening and chain shortening reactions	
		Reactions of D-Glucose and D-fructose	
	2.2.6	Introduction to glycosides	
Unit III	3.1	Natural Products	10
		Terpenoids : Introduction, Isoprene Rule, Special isoprene rule and the	-
		gem dialkyl rule	
	3.1.2	Citral : structure determination of citral, synthesis from methyl	
		heptanone and isomerism in citral	
	3.1.3	Alkaloids : Inroduction and occurrence, reactions used in structure	
		determination of alkaloids - Ziesel method , Reaction with MeI, test for	
		unsaturation, functional group detection, to determine nature of amine,	
		Hoffman exhaustive degradation in simple open chain and N-Substituted	
		cyclic amines	
	3.1.4	Nicotine: Structure determination (Pinner's work), synthesis from	
		nicotinic acid, harmful effects of nicotine.	
	3.1.5	Hormones: Introduction, structure of adrenaline, synthesis of adrenaline	
		from catechol and physiological action of adrenaline	
	3.2	Organometallic chemistry	
		Intoduction: Carbon-metal bondNature, types reactivity.	05
		Organo magnesium Compounds: Grignard reagent : Preparation,	05
	J. 2.2		
		structure, and stability, Reaction with compounds containing acidic	
	h	hydrogen, carbonyl compounds, cyanides and CO_2 .	
	3.2.3	Organolithium Compounds : Preparation using alkyl/aryl halides.	
		Reactions with compounds containing acidic hydrogen, alkyl halides,	
		carbonyl compounds, cyanides and CO ₂ . Lithium dialkyl cuprates:	
		Preparation and reactions with aliphatic /aromatic/vinylic halides.	

 3.2.4 Organozinc compounds: Preparation of dialkyl zinc. Reaction with water, acid chlorides and alkyl halides. Reformatsky reaction (with mechanism). 3.2.5 Organocopper reagents : Ullman reaction 	
5.2.5 Organocopper reagents. Onman reaction	
 4.1 Chemistry of enolates 4.1.1 Introduction: generation of enolates, kinetically controlled and thermodynamically controlled enolates 4.1.2 Mechanism and applications of the following reactions i) Aldol reaction ii) Knoevenagel reaction iii) Michael reaction iv) Robinson annulations v) Wittig reaction vi) Cannizzaro reaction vii) Claisen ester condensation and Dieckmann condensation viii) Claisen -Scmidt reaction 	10
 4.2 Catalysts and reagents Study of the following catalysts and reagents with respect to functional group transformations and selectivity (no mechanism) 4.2.1 Catalysts for hydrogenation i. Raney Nickel ii. Pt & PtO₂ (C=C, CN, NO₂, aromatic ring) iii. Pd/C(C=C, COCl to CHO (Rosenmund reduction) iv. Lindlar catalyst (alkynes) 	05

Learning Outcomes :

At the end of this course, the student will be able to

- Explain various methods of ring synthesis, reactivity and applications of heterocyclic compounds.
- Design synthesis of organic compounds using organometallic reagents .
- Synthesise simple organic compounds using ceric ammonium nitrate (CAN), DCC, Grignard reagent, LDA, Gilman reagent, NBS and PCC.
- Explain and discuss structure determination and synthesis of citral, Alkaloids and Hormones.
- Predict the products of reactions involving rearrangements.
- Explain and discuss the structures of mono saccharides, Interconversion of different forms ; Anomers , stability of anomers epimers and Reactions of D-Glucose and D-fructose
- Predict the mechanism of reactions involving enolates
- Explain structures of amino acids, peptides and nucleic acids; classify the peptides, design synthesis of peptides using Merrifield Solid phase peptide synthesis.
- Explain the role of nucleic acids in self duplication and protein synthesis.

Suggested Reading :

- 1. Name Reactions in Heterocyclic Chemistry, Jie-Jack Li, Wiley-Interscience publications, 2005.
- 2. Handbook of Heterocyclic Chemistry, 2nd Edition, Alan R. Katritzky and Alexander F. Pozharskii, Elsevier Science Ltd, 2000.
- 3. Heterocyclic Chemistry, 5th Edition, John A. Joule and Keith Mills, Wiley publication, 2010.
- 4. Heterocyclic chemistry, 3rd Edition, Thomas L. Gilchrist, Pearson Education, 2007.
- Biochemistry, 8 th Ed., Jeremy Berg, Lubert Stryer, John L. Tymoczko, Gregory J. Gatto Pub. W. H. Freeman Publishers
- Lehninger Principles of Biochemistry 7 th Ed., David Nelson and Michael Cox, Publisher W. H. Freeman
- 7. Name Reactions Jie Jack Li, 4th Edition, Springer Pub
- 8. Organic chemistry R.T.Morrison and R.N.Boyd, 6th edition, pearson education S.H.Pine, organic chemistry 4th edition. McGraw Hill
- 9. Organic chemistry (fourth edition), G, Marc Loudon, Oxford University press.
- 10. Introduction to Organic Chemistry (Third edition), Andrew Streitwieser, Jr. Clayton H. Heathcock, Macmilan publishing.
- 11. Organic chemistry fourth edition, Morrision and Boyd.
- 12. Introduction to Organic chemistry, John McMurry.
- 13. Organic chemistry volume-1&2 (fifth and sixth edition) IL Finar.
- 14. Chemistry of natural products by Chatwal Anand Vol I and Vol II
- 15. Chemistry of natural products by O.P. Agarwal
- 16. Chemistry of natural products by Meenakshi Sivakumar and Sujata Bhat.
- 17. Organic chemistry by Morrision and Boyd,7th edition.
- 18. I.L.Finar, Vol-I and Vol-II, 5th edition.
- 19. Principles of Organometallic Chemistry , by Coates G.E., K. Wade, P. Powell
- 20. Basic Organometallic Chemistry: Concepts, Syntheses and Applications by BD Gupta, Anil J. Elias
- 21. Organometallic Chemistry, by Gary O. Spessard, Gary L. Miessler
- 22. Organic chemistry by Francis Carey McGrawHill .
- 23. Oranic chemistry by Carey and Sundberg, Part A & B
- 24. Modern Enolate Chemistry: From Preparation to Applications in Asymmetric Synthesis by Manfred Braun
- 25. Organic Chemistry 1st Edition, Structure, Mechanism, and Synthesis, by J. David Rawn Robert Ouellette

PRACTICALS

SEMESTER - VI

ORGANIC CHEMISTRY

COURSE CODE: SCHP602

CREDITS: 03

A) SEMESTER VI:

Separation of Binary liquid-liquid and liquid- solid mixture.

- Minimum Six mixtures to be completed by the students.
- Components of the liq-liq mixture should include volatile liquids like acetone, methylacetate, ethylacetate, isopropylalcohol, ethyl alcohol, EMK and non volatile liquids like chlorobenzene, bromobenzene, aniline, N,N dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.
- Components of the liq- solid mixture should include volatile liquids like acetone, methylacetate, ethylacetate, ethyl alcohol, IPA, EMK and solids such as water insoluble acids, phenols, bases, neutral.
- A sample of the mixture one ml to be given to the student for detection of the physical type of the mixture.
- After correct determination of physical type, separation of the binary mixture to be carried out by distillation method using microscale technique.
- After separation into component A and component B, the compound to be identified can be decided by examiner.

.....

References:

- 1. Practical organic chemistry A. I. Vogel
- 2. Practical organic chemistry H. Middleton.
- 3. Practical organic chemistry O. P. Aggarwal.

T. Y. B. Sc. CHEMISTRY (Six Units) : Choice Based Credit System

Semester - VI

PAPER – IV : Analytical Chemistry

Course Name: Analytical Che	Course Code: S	Course Code: SCH604	
Periods per week (1 period 50 minu	04		
Credits	2.5		
		Hours	Marks
Evaluation System	Theory Examination	2.0	60
	Theory Internal		40

Course Objectives :

The primary objective of this course is to acquire basic concepts, principles, and techniques of modern analytical chemistry that would empower students with an analytical mind set and the abilities to solve diverse analytical problems in an efficient and quantitative way that conveys the importance of accuracy and precision of the analytical results. On successful completion of this course, students will be able

- 1. To introduce basic analytical techniques and practical aspects of classical chemical analysis.
- 2. To establish an appreciation of the role of chemistry in quantitative analysis
- 3. To provide an understanding of chemical methods employed for elemental and compound analysis.
- 4 To provide experience in some scientific methods employed in analytical chemistry.

TINIT T-			No. of lectures		
UNIT I:	EI	ELECTRO ANALYTICAL TECHNIQUES			
1.1	Polarography (Numerical and word problems are expected)				
	1.1.1	Difference between potentiometry and voltammetry, Polarizable and non-polarizable electrodes			
	1.1.2	Basic principle of polarography H shaped polarographic cell, DME (construction, working, advantages and limitations)			
	1.1.3	 DC polarogram: Terms involved - Residual current, Diffusion current, Limiting current, Half-Wave Potential Role and selection of supporting electrolyte, Interference of oxygen and its removal, polarographic Maxima and Maxima Suppressors Qualitative aspects of Polarography: Half wave potential E_{1/2}, Factors affecting E_{1/2} Quantitative aspects of polarography: Ilkovic equations: various terms involved in it (No derivation) 			

	1.1.4	Quantification		
		1) Wave height – Concentration plots (working		
		plots/calibration)2) Internal standard (pilot ion) method		
		3) Standard addition method		
	1.1.5	Applications advantages and limitations		
1.2	Ampero	metric Titrations	04	
	1.2.1	Principle, Rotating Platinum Electrode(Construction, advantages and limitations)		
	1.2.2	Titration curves with example		
	1.2.3	Advantages and limitations		
UNIT II:		METHODS OF SEPARATION - II		
2.1	Gas	Chromatography (Numerical and word problems are expected)	09	
	2.1.1	Introduction, Principle, Theory and terms involved		
	2.1.2	Instrumentation: Block diagram and components,types of columns, stationary phases in GSC and GLC, Detectors: TCD, FID, ECD		
	2.1.3	Qualitative, Quantitative analysis and applications		
	2.1.4	Comparison between GSC and GLC		
2.2	Ion Exc	hange Chromatography	06	
	2.2.1	Introduction, Principle.		
	2.2.2	Types of Ion Exchangers, Ideal properties of resin		
	2.2.3	Ion Exchange equilibria and mechanism, selectivity coefficient and separation factor Factors affecting separation of ions		
	2.2.4	Ion exchange capacity and its determination for cation and anion exchangers.		
	2.2.5	Applications of Ion Exchange Chromatography with reference to Preparation of demineralised water, Separation of amino acids		
UNIT III: FOOD AND COSMETICS ANALYSIS				
3.1	Int	roduction to food chemistry	10	

Introduction, need, chemical methods, action of chemicals(sulphur dioxide, boric acid, sodium benzoate, acetic acid, sodium chloride

Determination of boric acid by titrimetry and sodium benzoate by

3.1.1

3.1.2

HPLC.

Food processing and preservation:

Physical methods (Pasteurization and Irradiation)

and sugar) and pH control

3.1.3	Study and analysis of food products and detection of adulterants
	 Milk: Composition & nutrients, types of milk (fat free, organic and lactose milk) Analysis of milk for lactose by Lane Eynon's Method
	2) Honey: Composition, Analysis of reducing sugars in honey by Coles Ferricyanide method
	3) Tea: Composition, types (green tea and mixed tea) Analysis of Tannin by Lowenthal's method
	4) Coffee: Constituents and composition, Role of Chicory Analysis
	of caffeine by Bailey Andrew method.

3.2	Cosmetics		
	3.2.1	Introduction and sensory properties	
	3.2.2	Study of cosmetic products –	
		1) Face powder:	
		Composition	
		Estimation of calcium and magnesium by complexometric titration	
		2) Lipstick:	
		Constituents	
		Ash analysis for water soluble salts: borates, carbonates and zinc oxide	
		3) Deodorants and Antiperspirants: Constituents, properties,	
		Estimation of zinc by gravimetry	
UNIT IV	/: TH	ERMAL METHODS AND ANALYTICAL METHOD VALIDATIC)N
4.1	Therm	al Methods	08
4.1	Therm: 4.1.1	al Methods Introduction to various thermal methods	08
4.1			08
4.1		Introduction to various thermal methods	08
4.1	4.1.1	Introduction to various thermal methods (TGA, DTA and Thermometric titration)	08
4.1	4.1.1	Introduction to various thermal methods (TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA)	08
4.1	4.1.1	Introduction to various thermal methods (TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram, thermobalance (Basic components:	08
4.1	4.1.1	Introduction to various thermal methods(TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder) Thermogram (TG curve)forCaC2O4.H2O and CuSO4.5H2O Factors affecting thermogram-Instrumental factors and Sample	08
4.1	4.1.1	Introduction to various thermal methods(TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder) Thermogram (TG curve)forCaC2O4.H2O and CuSO4.5H2O Factors affecting thermogram-Instrumental factors and Sample characteristics	08
4.1	4.1.1	Introduction to various thermal methods(TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder) Thermogram (TG curve)forCaC2O4_H2O and CuSO4.5H2OFactors affecting thermogram-Instrumental factors and Sample characteristics Applications:	08
4.1	4.1.1	Introduction to various thermal methods(TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder) Thermogram (TG curve)forCaC2O4.H2O and CuSO4.5H2OFactors affecting thermogram-Instrumental factors and Sample characteristics Applications: Determination of drying and ignition temperature range	08
4.1	4.1.1	Introduction to various thermal methods(TGA, DTA and Thermometric titration) Thermogravimetric Analysis(TGA) Instrumentation-block diagram,thermobalance (Basic components: balance, furnace, temperature measurement and control, recorder) Thermogram (TG curve)forCaC2O4_H2O and CuSO4.5H2OFactors affecting thermogram-Instrumental factors and Sample characteristics Applications:	08

	4.1.3	Differential Thermal Analysis (DTA): Principle, Instrumentation, and Reference material used	
		Differential thermogram (DTA curve) CaC_2O_4 . H_2O and $CuSO_4.5H_2O$	
		Applications Comparison between TGA and DTA.	
	4.1.4	Thermometric Titrations – Principle and Instrumentation	
		Thermometric titrations of : i. HCl v/s NaOH	
		i. HCI V/S NaOH ii. Boric acid v/s NaOH	
		iii. Mixture of Ca ⁺² and Mg ⁺² v/s EDTA	
		iv. Zn^{+2} with Disodium Tartarate.	
4.2	Analyti	ical Method Validation	
	4.2.1	Introduction and need for validation of a method	02
	4.2.2	Validation Parameters: Specificity, Selectivity, Precision, Linearity, Accuracy and Robustness.	02
4.3	4.3.1	Mass Spectroscopy Basic principle, instrumentation, various components of instruments	03
	4.3.2	Applications of Mass spectrometry	

Learning Outcomes :

At the end of this course, the student will know

- 1. Discuss the principles of polarography and amperometric titrations,
- 2. Classify the different types of chromatography and discuss its applications.
- 3. Compare the food industry with the cosmetic industry
- 4. Differentiate between TGA and DTA
- 5. Evaluate the analytical method of validation and explain the principle and applications of mass spectrometry.

.....

References :

1.	An Advance Dairy chemistry, V 3, P. F. Fox, P. L. H. McSweeney Springer	Unit/s (3.1,3.2)
2.	Analysis of food and Beverages, George Charalanbous, Academic press 1978	Unit/s (3.1,3.2)
3.	Analytical Chemistry of Open Learning(ACOL), James W. Dodd & Kenneth H. Tonge	Unit/s (4.1,4.2)
4.	Analytical chemistry David Harvey The ,McGraw Hill Companies, Inc.	Unit/s (4.1,4.2)
5.	Analytical Chemistry, Gary.D Christan, 5th edition	Unit/s (2.1,2.2)
6.	Analytical chemistry, R. K. Dave.	Unit/s (2.1,2.2)
7.	Chemical methods of separation, J A Dean, Van Nostrand Reinhold, 1969	Unit/s (2.1,2.2)
8.	Egyankosh.ac.in/bitstream/123456789/43329/1/Unit-8	Unit/s (1.1,1.2,1.3)
9.	Food Analysis, Edited by S. Suzanne Nielsen, Springer	Unit/s (3.1,3.2)
10.	Food Analysis: Theory and practice, YeshajahuPomeranz, Clifton E. Meloan, Springer	Unit/s (3.1,3.2)
11.	Formulation and Function of cosmetics, Sa Jellineck	Unit/s (3.1,3.2)
12.	Fundamentals of Analytical Chemistry, D .A. Skoog and D. M. West and F. J. Holler Holt., Saunders 6th Edition (1992)	Unit/s (2.1,2.2)
13.	Government of India publications of food drug cosmetic act and rules.	Unit/s (3.1,3.2)
14.	Harry's Cosmetology, Longman scientific co.	Unit/s (3.1,3.2)
15.	High Performance Thin Layer Chromatography in Food analysis, by Prem kumar, CBS Publisher and distributer	Unit/s (3.1,3.2)
16.	Instrumental methods Of Analysis, by Willard Merritt Dean, 7thEdition, CBS Publisher and distribution Pvt Ltd	Unit/s (1.1,1.2,1.3) (4.1,4.2,4.3)
17.	Introduction to Polarography and Allied Techniques, By Kamala Zutshi, New Age International, 2006.	Unit/s (1.1,1.2,1.3)
18.	Modern cosmetics, E. Thomessen Wiley Inter science	Unit/s (3.1,3.2)
19.	Principles of Instrumental Analysis, 5th Edition, By Skoog, Holler, Nieman	Unit/s (4.1,4.2,4.3)
20.	Principles of Polarography by Jaroslav Heyrovský , Jaroslav Kůta, 1st Edition, Academic Press, eBook ISBN: 978148326478	Unit/s (1.1,1.2,1.3)
21.	Solvent extraction and ion exchange, J Marcus and A. S. Kertes Wiley INC 1969	Unit/s (2.1,2.2,)

PRACTICALS

SEMESTER - VI

ANALYTICAL CHEMISTRY

COURSE CODE: SCHP602

CREDITS: 03

- 1. Estimation of Chromium in water sample spectrophotometrically by using Diphenyl carbazide.
- 2. Estimation of reducing sugar in honey by Willstatter method.
- 3. Estimation o Mg^{+2} & Zn^{+2} by anion exchange resin. using an anion exchange resin
- 4. Estimation of acetic acid in Vinegar sample by using Quinhydrone electrode potentiometrically.
- 5. Determination of phosphoric acid in cola sample pH metrically.

Note: Calculation of percent error is expected for all the experiments

References:

- 1. Vogel's Textbook of Quantitative Chemical Analysis, 5thEdn., G. H. Jeffery, J Bassett, J Memdham and R C Denney, ELBS with Longmann (1989).
- 2. Vogel's Textbook of Quantitative Chemical analysis, Sixth edition, J.Mendham et.al
- 3. The chemical analysis of food and food products III edition Morris Jacob
- 4. The chemical analysis of food by David Pearson and Henry Edward

