MSc Biotechnology Course Structure

Semester I

Course code	Title	Theory	Marks	Credits	Nos of
		/Practical			Lectures /week
PSBT 101	Biochemistry	Theory	100	4	4
PSBT 102	Immunology	Theory	100	4	4
PSBT 103	Cell Biology	Theory	100	4	4
PSBT 104	Emerging technologies and molecular diagnostics	Theory	100	4	4
PSBTP 101+ PSBTP 104	Practical I	Practical	100	4	8
PSBTP 102+ PSBTP 103	Practical II	Practical	100	4	8
	TOTAL		600	24	32

MSc Biotechnology Course Structure

Semester II

Course code	Title	Theory /Practical	Marks	Credits	Nos of Lectures/ week
PSBT 201	Bioinformatics and Biostatistics	Theory	100	4	4
PSBT 202	Plant and Animal Biotechnology	Theory	100	4	4
PSBT 203	Bioprocess Engineering and technology	Theory	100	4	4
PSBT 204	Intellectual property rights and Bioethics	Theory	100	4	4
PSBTP 201+ PSBTP 203	Practical III	Practical	100	4	8
PSBTP 202+ PSBTP 204	Practical IV	Practical	100	4	8
	TOTAL		600	24	32

Teaching pattern:

One (01) Credit would be of thirty- forty (30-40) learning hours; of this more than fifty percent of the time will be spent on class room instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars / workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (60L as class room teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be for 60 min. The names of the reference books provided in the syllabus are for guidance purpose only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

Scheme of Examinations:

- (a) Internal assessment of 40 marks per course per semester would be conducted.
- (b) External assessment of 60 marks per course per semester would be conducted.
- (c) Practical examination of 200 marks should be conducted at the end of every semester.

Skeleton- Examination pattern for theory

All Questions are compulsory

Qts No	Topic/ format of the question	Total marks allotted
QI	Based on Unit I:	12
QII	Based on Unit II:	
		12
QIII	Based on Unit III	12
QIV	Based on Unit IV	12
QV	Based on all the units: these could have Match the following and /or MCQ and /or definitions and /or answer in one sentence and /or short answers	12
	TOTAL	60
Hours	s 2.5 hr	Total: 60M

Skeleton- Examination pattern and instructions for Practicals

A learner would have to attempt a part / the entire experiments/ identification questions from Practical I and II for Sem I and Practical II and III for Sem II respectively in a time span of 3 days. The learner will perform experiments in part or in total that would be evaluated for a total of 200M/ semester. The experiments would have to be performed starting with preparation of reagents, glassware etc up-to results and conclusion as per the question asked. Similar format would be followed for Practical II. Submission of certified journals at the time of examinations is compulsory

Practical Examination Pattern in Biotechnology (M.Sc Sem I/II)

Month/Year

10.00 AM to 5.00 PM

Practical I and II

(100M+100M) Total 200M

Practical III and IV

Perform the following experiment/s marked below: (Given as an example here)

Separate the given protein sample using gel electrophoresis and perform silver staining

The learner is expected to prepare the necessary buffers, ask for requisite glassware, prepare the sample, staining/de staining solutions etc, perform the experiment, cast and run the gel and subsequently interpret the results and conclude accordingly.

OR

Determine the unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer.

A learner is expected to weigh BSA, prepare the dilutions using an appropriate diluent, read the sample, plot the graph. Subsequently the sample provided would be prepared and read and concentration determined accordingly by the learner.

OR

Identification / theory based	questions from no	on-performing practical	25M

OR

Presentation of papers that have been used to make a poster	10M
---	------------

OR

Solve statistical problems

15M

M.Sc. Biotechnology Semester –I

Paper-I Biochemistry (PSBT 101)

Units	Topics	Credit	No of lectures
Unit-I Glycobiology & Membrane Biochemistry	Glycosylation of Biomolecules - Synthesis N-linked, O- linked, and GPI linked glycoproteins and role of glycosylation. Lipid aggregates: micelles, bilayers and liposomes- structure, types, preparation, characterization, and therapeutic applications of liposomes. Composition and Architecture of membrane: structural lipids in membranes, membrane bound proteins - structure, properties, and function. Membrane Dynamics: lipid movements, flippase, FRAP, Lipid raft, Membrane fusion. Solubilization of the membrane by using different detergents.		15
Unit- II Protein Transport & Membrane Trafficking	Translocation of Secretory Proteins across the ER Membrane, Insertion, Protein Modifications, Folding, and Quality, Control in the ER, Protein sorting and export from Golgi Apparatus. Sorting of Proteins to Mitochondria and Chloroplasts. Molecular Mechanisms of Vesicular Traffic, early and later Stages of the Secretory Pathway, Receptor-Mediated Endocytosis. Protein degradation: Ubiquitin-proteasome pathway and lysosomal proteolysis.	4	15
Unit- III Biochemistry of Nucleic acids	 Forces stabilizing nucleic acid structures, triple helix. Superhelix topology- linking number, Twist and writhing number, measurement of supercoiling and Topoisomerases. Nucleic acid binding protein – Leucine Zipper, Zinc fingers, OB fold, Beta Barrel, Helix-turnhelix, Helix-loop-helix. Biosynthesis of nucleic acids and inborn errors of nucleic acid Metabolism. Methodologies for detection: Protein –Protein and DNA – Protein interactions: Gel retardation assay, DNA foot printing, Yeast 2 Hybrid Method advantages and limitations, yeast split-hybrid and reverse two-hybrid systems, Co-Immunoprecipitation (Co-IP) and Far- 		15

	Western Blot Analysis.	
Unit- IV Bioenergetics and regulation of metabolism	Biosynthesis of Amino acids; phenylalanine, tyrosine, threonine and methionine. Bioenergetics- coupled interconnecting reactions in metabolism; oxidation of carbon fuels; recurring motifs in metabolism. Elucidation of metabolic pathways: Experimental approaches to the study of Metabolism. Integration of central metabolism; entry/ exit of various biomolecules from central pathways, principles of metabolic regulation. Strategies of energy Metabolism: organ specialization- Brain, Muscle, Adipose Tissue, Liver, Kidney. Metabolic Homeostasis: Regulation of Appetite, Energy Expenditure, and Body Weight; Metabolic Adaptation: Starve–Feed Cycles, insulin signaling and Diabetes Mellitus, target of rapamycin (TOR).	15

- 1. Stryer, L. (2015). Biochemistry. (8th edition) New York: Freeman.
- 2. Lehninger, A. L. (2012). Principles of Biochemistry (6th edition). New York, NY: Worth.
- 3. Voet, D., & Voet, J. G. (2016). *Biochemistry* (5th edition). Hoboken, NJ: J. Wiley & Sons.
- 4. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008).
- 5. Lodish, H. F. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman.
- 6. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014).
- 7. Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning.
- 8. Cooper, G. M., & Hausman, R. E. (2013). *The Cell: a Molecular Approach* (6th Ed.). Washington: ASM; Sunderland.
- 9. Laouini et.al. Preparation, Characterization and Applications of Liposomes: State of the Art. journal of Colloid Science and Biotechnology Vol. 1, 147–168, 2012
- 10. Watson, James D., Baker, Tania A., Bell, Stephen P. & Gann, Alexander: Molecular biology of the gene. (6th ed.) New York. Pearson Education Inc., 2008. 0-321-50781-9

Unit	Topics	Credit	No of Lectures
I Vaccinology	Active and passive immunization; live, killed, attenuated, subunit vaccines; vaccine technology: role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines; antibody genes and antibody engineering: chimeric, generation of monoclonal antibodies, hybrid monoclonal antibodies; catalytic antibodies and generation of immunoglobulin gene libraries, idiotypic vaccines and marker vaccines, viral- like particles (VLPs), dendritic cell based vaccines, vaccine against cancer, T cell based vaccine, edible vaccine and therapeutic vaccine.		15
II Clinical Immunology	Immunity to infection : bacteria, viral, fungal and parasitic infections (with examples from each group); hypersensitivity: Type I-IV; transplantation: immunological basis of graft rejection; clinical transplantation and immunosuppressive therapy; tumor immunology: tumor antigens; immune response to tumors and tumor evasion of the immune system, cancer immunotherapy; immunodeficiency: primary immunodeficiencies, acquired or secondary immunodeficiencies, autoimmune disorder, anaphylactic shock, immunosenescence, immune exhaustion in chronic viral infection, immune tolerance, NK cells in chronic viral infection and malignancy	4	15
III-Immuno genetics	Major histocompatibility complex genes and their role in autoimmune and infectious diseases, HLA typing, human major histocompatibility complex (MHC), Complement genes of the human major histocompatibility complex: implication for linkage disequilibrium and disease associations, genetic studies of autoimmunity; types of autoimmune diseases; mechanism and role of CD4+ T cells; MHC and TCR in autoimmunity; treatment of autoimmune diseases; rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis, genetics of human immunoglobulin, immunogenetics of spontaneous control of HIV, KIR complex.		15

Paper II – Immunology (PSBT102)

IV: Antigen-	Precipitation, agglutination and complement mediated	
antibody	immune reactions; advanced immunological techniques:	
interactions	RIA, ELISA, Western blotting, ELISPOT assay,	
	immunofluorescence microscopy, flow cytometry and	15
	immunoelectron microscopy; biosensor assays for	
	assessing ligand -receptor interaction; CMI techniques:	
	lymphoproliferation assay, mixed lymphocyte reaction,	
	cell cytotoxicity assays, apoptosis, transgenic mice, gene	
	knock outs.	

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman.
- Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub.
- 3. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 4. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press.
- Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press.
- 6. Parham, P. (2005). The Immune System. New York: Garland Science
- 7. An introduction to Immunology C V Rao Narosa Publishing house
- 8. Immunology essential and fundamental, Second edition S Pathak & U Palan Parveen Publishing House
- 9. Text Book of Medical Biochemistry, Praful Godkar. Bahalani Publishers
- 10. Immunology, An introduction, fourth edition. Ian R Tizard Thomson
- 11. Immunology, sixth Ed Roitt, Brostoff, Male Mosby, An imprint of Elsevier science Ltd
- 12. Medical Microbiology, Anantnarayan

Paper III- Cell Biology (PSBT 103)

Unit	Topics	Credit	Number of lectures
I- Dynamics and organization of cell	Universal features of cells; cell chemistry and biosynthesis: chemical organization of cells; internal organization of the cell - cell membranes and cell organelle; dynamics of DNA and mechanisms based on central dogma; chromatin control: gene transcription and silencing by chromatin Writers,-Readers and –Erasers; replication, transcription and translation machineries mitochondrial genetic code translation product cleavage, modification and activation.		15
II- Cellular signaling, transport and trafficking	Cellular signaling Molecular mechanisms of membrane transport, nuclear transport, transport across mitochondria and chloroplasts; intracellular vesicular trafficking from endoplasmic reticulum through Golgi apparatus to lysosomes/cell exterior. Cell signaling- intercellular communications- nerve impulses, neurotransmitters; agonist and antagonist reactions		15
III- Cellular processes – manipulations	Cell cycle and its regulation; cell divisions and related machineries; cell differentiation: stem cells, their differentiation into different cell types and organization into specialized tissues; cell-ECM and cell-cell interactions; cell receptors and transmembrane signaling; cell motility and migration; cell death: different modes of cell death and their regulation. Isolation of cells and basics of cell culture; observing cells under a microscope, analyzing and manipulating DNA, RNA and proteins.	4	15
IV- Genome instability and cell transformation	Mutations, proto-oncogenes, oncogenes and tumor suppressor genes, physical, chemical and biological mutagens; types of mutations; Epigenetic mutations intra- genic and inter-genic suppression; transpositions- transposable genetic elements in prokaryotes and eukaryotes, role of transposons in genome; viral and cellular oncogenes; tumor suppressor genes; structure, function and mechanism of action; activation and suppression of tumor suppressor genes; oncogenes as transcriptional activators.		15

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell. New York: Garland Science.

2. Lodish, H. F. (2000). Molecular Cell Biology. New York: W.H. Freeman.

3. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI. Burlington, MA: Jones & Bartlett Learning.

4. Cooper, G. M., & Hausman, R. E. (2009). The Cell: a Molecular Approach. Washington: ASM; Sunderland.

5. Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W. M. (2012). Becker's World of the Cell. Boston: Benjamin Cummings.

6. Watson, J. D. (1987). Molecular Biology of the Gene (7th ed.). Menlo Park, CA: Benjamin/Cummings.

7.Ernst J M Helmreich The Biochemistry cell signaling. Oxford University Press (Indian Edition)

Unit	Topics	Credit	Lectures
Unit I- Functional genomics and proteomics Unit II Basic and	Genomics Gene expression by SAGE and Microarrays- Construction of microarrays – genomic arrays, cDNA arrays and oligo arrays and its applications, NGS platforms, high and low read sequencesProteomics; Separation and Identification of Proteins 2D-PAGE, isoelectric focusing, Edman reaction Protein tryptic digestion and peptide mass fingerprinting mass spectrometry, MALDI-TOF Protein Expression Profiling; Protein Microarrays/ Protein chips: Types and applications Gel-based quantitative proteomics: DIGE (Difference in Gel Electrophoresis);Gel-free based quantitative proteomic: Surface plasmon resonance, MS based used with stable-isotope tagging, In vivo labelling- SILAC, Invitro labelling- ICAT: Clinical and biomedical 	Credit 4	Lectures 15 15
Advanced Microscopy:	Contrast; Differential Interference Contrast; fluorescence and fluorescence microscopy: what is fluorescence, what makes a molecule fluorescent, fluorescence microscope; optical arrangement, light source; filter sets: excitation filter, dichroic mirror, and barrier, optical layout for image capture; CCD cameras; back illumination, binning; recording color; three CCD elements with dichroic beamsplitters, boosting the signal. Confocal microscopy. Advanced fluorescence techniques: FLIM, FRET, and FCS, Fluorescence Lifetime, Fluorescence Resonant Energy Transfer (FRET), Fluorescence Correlation Spectroscopy (FCS), Evanescent Wave Microscopy; Near-Field and Evanescent Waves, Total Internal Reflection Microscopy; Near-Field Microscopy; Beyond the Diffraction Limit: Stimulated Emission Depletion (STED), Super-Resolution Summary, Super- Resolution Imaging with Stochastic Optical Reconstruction Microscopy (PALM).		

Paper IV Emerging technologies and molecular diagnostics (PSBT 104)

Unit III	CRISPER CAS: History of its discovery,	15
CRISPER CAS	elucidation of the mechanism including	13
and Molecular	introduction to all the molecular players	
cytogenetics	development of applications for <i>in vivo</i> genome	
eytogeneties	engineering for genetic studies, promise of the	
	technology as a next generation therapeutic method	
	Introduction to chromosomal abnormalities.	
	Advanced Cytogenetic techniques and	
	applications - FISH , M-FISH ,SKY, CGH,	
	Microarrays principle, methodology. Molecular	
	Approaches for Delineating, Marker	
	Chromosomes, Prenatal Diagnosis of Common	
	Aneuploidies, Preimplantation FISH Diagnosis of	
	Aneuploidies, Molecular Cytogenetics in	
	Reproductive Pathology	
	Interphase FISH Studies of Chronic Myeloid	
	Leukemia, FISH Detection of HER2 Amplification	
	in Breast Cancer, Chromogenic In Situ	
	Hybridization and FISH in Pathology,	
Unit IV	Techniques:	15
Diagnostic	Molecular amplification techniques	
Microbiology	Target amplification systems	
	Probe amplification systems	
	• Signal amplification	
	PCR in molecular diagnostics; viral and bacterial detection	
	Quantitation of organisms – internal controls,	
	external standards, calibrators, absolute and	
	relative quantification	
	Identification and classification of organisms using	
	molecular markers- 16S rRNA typing/sequencing	
	Detection and identity of microbial diseases Direct	
	detection and identification of pathogenic-	
	organisms/ viruses E.g. TB and HIV	
	Clinical utility of molecular diagnostics tests	
	(NAAT) for Hepatitis and AIDS.	
	Molecular identification of fungal pathogens	
	Pharmacogenetics	

- 1. Campbell, I. D. (2012). *Biophysical Techniques*. Oxford: Oxford University Press.
- 2. Serdyuk, I. N., Zaccai, N. R., & Zaccai, G. (2007). *Methods in Molecular Biophysics: Structure, Dynamics, Function*. Cambridge: Cambridge University Press.
- 3. Phillips, R., Kondev, J., & Theriot, J. (2009). Physical Biology of the Cell. New York: Garland Science.
- 4. Huang, B., Bates, M., & Zhuang, X. (2009). *Super-Resolution Fluorescence Microscopy*. Annual Review of Biochemistry, 78(1), 993-1016. doi:10.1146/annurev.biochem.77.061906.092014.
- Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & Oost, J. V. (2016). Diverse Evolutionary Roots and Mechanistic Variations of the CRISPR-Cas Systems. Science, 353(6299). doi:10.1126/science.aad5147.

6. Lander, E. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi:10.1016/j. cell.2015.12.041.

- 7. Ledford, H. (2016). *The Unsung Heroes of CRISPR*. Nature, 535(7612), 342-344. doi:10.1038/535342a.
- 8. *Molecular Imaging* Theranostics, 4(4), 386-398. doi:10.7150/thno.8006 Coleman, W. B., & Tsongalis, G. J. (2010). *Molecular Diagnostics: for the Clinical Laboratorian*. Totowa, NJ: Humana Press.
- 9. Molecular biology of the cell by Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Rafi, Keith Roberts, and Peter Walter. 5th ed. 2008
- 10. Molecular Microbiology Diagnostic Principles and practice third edition, David H. Persing and Fred C. Tenover Copyright _ 2016 by ASM Press
- 11. Methods in Molecular Biology, Vol. 204: Molecular Cytogenetics: Protocols and Applications, Edited by: Y. S. Fan © Humana Press Inc., Totowa, NJ 2001
- 12. Genome 3 TA Brown
- Molecular Biotechnology Principles and applications of recombinant technology, Glick 4th edition 2010
- Microarray and Microplates: Applications in biomedical sciences Shu Ye, Ian Day, 2003, Bios Scientific Ltd, oxford.
- 15. Human Molecular Genetics. Tom Strachan and Andrew Read, 2004, 3rd Edition, Garland Science.
- 16. Introduction to human molecular genetics. Jack Pasternak, 2005, 2nd Edition, Wiley publication.
- 17. Microarray bioinformatics by Dov Sketel, Cambridge university press 2003

Practical I PSBTP 101+ PSBTP 104

4 Credits

- 1. To prepare an Acetate and Phosphate buffers using the Henderson-Hassel Bach equation.
- 2. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 3. Protein gel staining techniques: silver staining, Activity staining: LDH, glycoprotein staining
- 4. Viscosity studies of proteins
- 5. Identification of sugars in fruit juices using thin layer chromatography.
- 6. Isolation of starch from potato and its estimation by anthrone method.
- 7. The isolation and assay of glycogen from liver and skeletal muscles of bird/mammal.
- 8. Antimicrobial sensitivity test and demonstration of drug resistance.
- 9. Operation and maintenance of light microscope Write up
- 10. Microscopy types Confocal, Fluorescence, STORM demonstrations/videos and pictures Write up
- 11. Photo album of chromosomal abnormalities in normal and disease condition numerical detected by using different probes – centromeric, locus specific, telomeric Structural -
 - Translocations and fusion genes
 - Detection of inversions and interstitial deletions by SKY
 - CGH for a disease or cancer
- 12. Demonstration/ video of 2D PAGE
- 13. Demonstration of Affinity chromatography

- 1. Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press.
- 2. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearson's Publication.
- 3. Biochemical Methods, Sadasivam and Manikam(3rd Ed, 2008)New age international publishers,2008.
- 4. An Introduction to Practical Biochemistry (3rd Edition), David T Plummer, Tata McGraw Hill Publishing Company Limited, 1992.

Practical II PSBTP 102+PSBTP 103

- 1. Preparation of TAB and sterility testing
- 2. Demonstration of Western blotting
- 3. Perform serum electrophoresis (horizontal)
- 4. To perform the Dot blot assays
- 5. In-vitro demonstration of phagocytosis and calculating phagocytic index.
- 6. Latex bead agglutination / precipitation test for detection of rheumatoid factor (RF)
- 7. Separation of lymphocytes on Ficol Histopaque and viability count
- 8. Visit to a blood bank and preparation of report
- 9. Cell permeability testing- osmotic fragility
- 10. Isolation of cell organelle by differential centrifugation techniques from plant / animal sources
- 11. Isolation of mitochondrial DNA
- 12. Isolation of chloroplast DNA
- 13. Cell motility studies (bacteria, algae, cyanobacteria, protozoans,)
- 14. Cell death /apoptosis studies using flow-cytometry demonstration
- 15. Isolation and identification of mutagens of plant origin (demonstration/video)

References

- 1. A Handbook of Practical Immunology G P Talkwar
- 2. Practical immunology, Frank Hay, 4th Edition, Blackwell Science
- 3. Introduction to Practical Biochemistry, D.T. Plummer, Tata MacGraw Hill
- 4. Biochemical Methods, Sadasivam and Manikam(3rd Ed, 2008). New age international publishers,2008.
- Laboratory Manual of Microbiology, Biochemistry and Molecular Biology, Jyoti Saxena Mamta Baunthiyal Indu Ravi, Scientific Publishers (India) 5 A, New Pali Road, P.O. Box 91 Jodhpur 342 001 (India)
- 6. Medical Laboratory Technology 2nd edition Authors Kanai, L Mukherjee and Swarajit Ghosh .McGraw Hill publications,2010.
- 7. Practical Immunology, Frank Hay, 4th Edition, Blackwell Science
- 8. Medical Microbiology, Anantnarayan
- 9. An Introduction to Practical Biochemistry (3rd Edition), David T Plummer, Tata McGraw Hill Publishing Company Limited, 1992.
- 10. Nigam and Ayyagari. (2007). Lab Manual in Biochemistry, Immunology and Biotechnology. TATA McGraw Hill.
- 11. Cell Biology Lab Manual-http://www.ihcworld.com/_protocols/lab_protocols/cellbiology-labmanual-heidcamp.htm
- 12. Text Book of Medical Biochemistry, Praful Godkar. Bahalani

4 credits

MSc Biotechnology

Semester II

Paper I -Biostatistics and Bioinformatics (PSBT 201)

Unit	Торіс	Credit	lectures
I Basics of Bioinformatics and DNA sequence analysis	Bioinformatics basics: Computers in biology and medicine; Introduction to Unix and Linux systems and basic commands; Database concepts; Protein and nucleic acid databases; Structural databases; Biological XML DTD's; pattern matching algorithm basics; databases and search tools: biological background for sequence analysis; Identification of protein sequence from DNA sequence; searching of databases similar sequence; NCBI; publicly available tools; resources at EBI; resources on web; database mining tools. DNA sequence analysis: gene bank sequence database; submitting DNA sequences to databases and database searching; sequence alignment; pairwise alignment techniques; motif discovery and gene prediction; local structural variants of DNA, their relevance in molecular level processes, and their identification; assembly of data from genome sequencing.		15
II Multiple sequence alignments and protein modelling	Multiple sequence analysis; multiple sequence alignment; flexible sequence similarity searching with the FASTA3 program package; use of CLUSTALW and CLUSTALX for multiple sequence alignment; submitting DNA protein sequence to databases: where and how to submit, SEQUIN, genome centres; submitting aligned sets of sequences, updating submitted sequences, methods of phylogenetic analysis. Protein modelling: introduction; force field methods; anarous buried and avprased residuces side abains and	4	15
	energy, buried and exposed residues; side chains and neighbours; fixed regions; hydrogen bonds; mapping properties onto surfaces; fitting monomers; RMS fit of conformers; assigning secondary structures; sequence alignment- methods, evaluation, scoring; protein completion: backbone construction and side chain addition; small peptide methodology; software accessibility; building peptides; protein displays; substructure manipulations, annealing.		
III-Biostatistics	Introduction and scope of statistics in biological studies and basic concepts. Collection of data, by different sampling methods: Simple random sampling, stratifies random sampling and systemic sampling. Measures of central tendency; Mean, Median and Mode. Measures of		15

	Dispersion: Variance/ standard deviation, coefficient of	
	variation and standard error. Confidence limits for mean	
	and proportion. Probability and Basic concepts: Normal	
	and binomial distribution. Correlation and regression	
	analysis for a bivariate data: Scatter diagram	
IV- Biostatistics	Test of Hypothesis: Null hypothesis, alternate	
	hypothesis, test statistics, Type I and Type II errors, level	
	of significance and critical region. Z test: for a single	
	sample, two samples and two sample proportion. t-test a	
	single sample, two samples and testing the significance	
	of the correlation. Coefficient: t paired test, x^2 test: As a	
	goodness of fit and in 2x2 contingency test	
	goodness of in and in 2x2 contingency test	

- 1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.
- 2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.
- 4. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell.
- 5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.
- 6. Lesk, A. M. (2004). Introduction to Protein Science: Architecture, Function, and Genomics. Oxford: Oxford University Press.
- 7. S. P. Gupta, Statistical Methods, (45th Revised Edition), Publisher SCHAND
- 8. William G. Cochran, Sampling Techniques (3th Edition), Wiley and sons
- 9. Boris V. Gnedenko, Theory of Probability (6th Edition), CRC Press, 13-May-1998
- 10.Oscar Kempthorne, Klaus Hinkelmann, Design and Analysis of Experiments, Volume1: Introduction to Experimental Design, 2nd Edition, ISBN: 978-0-471-72756-9 December 2007
- 11. Acheson Johnston Duncan, Quality Control and Industrial Statistics (5th Edition), Irwin; 5 edition January 1, 1986
- 12. BK Mahajan, Methods in Biostatistics (7th Edition), Published December 1st 2008 by JP Medical Ltd

Unit	Торіс	Credit	lectures
I Plant tissue culture and Animal cell culture	Plant tissue culture: historical perspective; totipotency; organogenesis; Somatic embryogenesis; establishment of cultures – callus culture, cell suspension culture, media preparation – nutrients and plant hormones; sterilization techniques; applications of tissue culture – micropropagation; somaclonal variation; androgenesis and its applications in genetics and plant breeding; germplasm conservation and cryopreservation; synthetic seed production; protoplast culture and somatic hybridization - protoplast isolation; culture and usage; somatic hybridization - methods and applications; cybrids and somatic cell genetics; plant cell cultures for secondary metabolite production. Animal cell culture: brief history of animal cell culture; cell culture media and reagents; culture of mammalian cells, tissues and organs; primary culture, secondary culture, continuous cell lines, suspension cultures; application of animal cell culture for virus isolation and <i>in vitro</i> testing of drugs, testing of toxicity of environmental pollutants in cell culture, application of cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins. Genetic engineering: <i>Agrobacterium</i> -plant interaction;	4	15
III Animal reproductive biotechnology and Vaccinology	virulence; Ti and Ri plasmids; opines and their significance; T-DNA transfer; disarmed Ti plasmid; Genetic transformation - <i>Agrobacterium</i> -mediated gene delivery; cointegrate and binary vectors and their utility; direct gene transfer - PEG-mediated, electroporation, particle bombardment and alternative methods; screenable and selectable markers; characterization of transgenics; chloroplast transformation; marker-free methodologies; advanced methodologies - cisgenesis, intragenesis and genome editing; molecular pharming - concept of plants as biofactories, production of industrial enzymes and pharmaceutically important compounds. Animal reproductive biotechnology: structure of sperms and ovum; cryopreservation of sperms and ova of livestock; artificial insemination; super ovulation, embryo recovery and <i>in vitro</i> fertilization; culture of embryos; cryopreservation of embryos; embryo transfer		15
, accinology	technology; transgenic manipulation of animal embryos; applications of transgenic animal technology; animal cloning - basic concept, cloning for conservation for conservation endangered species; Vaccinology: history of development of vaccines, introduction to the concept of vaccines, conventional methods of animal vaccine		

Paper II-Plant and Animal Biotechnology (PSBT 202)
--

	production, recombinant approaches to vaccine production, modern vaccines.	
IV Molecular mapping and marker assisted selection	Molecular markers - hybridization and PCR based markers RFLP, RAPD, STS, SSR, AFLP, SNP markers; DNA fingerprinting-principles and applications; introduction to mapping of genes/QTLs; marker-assisted selection - strategies for Introducing genes of biotic and abiotic stress resistance in plants: genetic basis for disease resistance in animals; molecular diagnostics of pathogens in plants and animals; detection of meat adulteration using DNA based methods.	15

- 1. Biology of plant metabolomics, Robert Hall, Annual Plant Reviews, 43, Chichester, West Sussex; Ames, Iowa : Wiley-Blackwell, 2011
- 2. Plant Biotechnology. Umesha, S. (2013).
- 3. Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, D.C.: ASM Press.
- 4. Brown, T. A. (2006). Gene Cloning and DNA Analysis: An Introduction. Oxford: Blackwell Publishers.
- 5. Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- 6. Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- 7. Gordon, I. (2005). Reproductive Techniques in Farm Animals. Oxford: CAB International.
- 8. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker.
- 9. Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: Humana Press.
- 10. Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- 11. Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science.
- 12. Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: n Introduction to Genetic Engineering. Oxford: Oxford University Press.
- 13. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants, Wiley 2002

Unit	Topics	Credit	Lectures
I Basic principles of biochemical engineering	Sources of Microorganisms Used in Biotechnology- Literature search and culture collection supply, Isolation de novo of organisms producing metabolites of economic importance. Strain Improvement- Selection from naturally occurring variants, Manipulation of the genome of industrial organisms in strain improvement Bioreactor design and analysis Media formulation and optimization methods; sterilization of bioreactors aeration and agitation in bioreactors KLa value (factors affecting and methods of determination), heat transfer in bioprocess measurement and control of bioprocess parameters.		15
Unit II Production of proteins from recombinant microorganisms	Bioprocess economicsPrinciples of Microbial GrowthBatch Fermentation, Fed-Batch FermentationContinuous FermentationMaximizing the Efficiency of the FermentationProcessHigh-Density Cell Cultures, Increasing PlasmidStability, Quiescent E. coli Cells, Protein Secretion andReducing AcetateBioreactorsTypical Large-Scale Fermentation NystemsTwo-Stage Fermentation in Tandem Airlift Reactors,Two-Stage Fermentation in a Single Stirred-TankReactor, Batch versus Fed-Batch FermentationHarvesting Microbial CellsDisrupting Microbial CellsDownstream ProcessingProtein SolubilizationLarge-Scale Production of plasmid DNA	4	15
Unit III Applications of enzyme technology in food processing	 Introduction and scope 1. Enzymes sourced from animals and plants used in food manufacturing technology 2. Enzyme usage in food applications. Mechanism of enzyme function and reactions in food processes 1 Starch-processing and related carbohydrates. 2. Lipases for the production of food components: interesterified fat 3. Enzymes in protein modification: hydrolyzed 		15

Paper III -Bioprocess engineering and technology (PSBT 203)

	protein	
	4., Enzymes in bread making - flavour, texture and	
	keeping quality	
	5. Enzymes in dairy product manufacture	
	6. Enzymes in fruit and vegetable processing and juice	
	extraction	
	7.Enzymes in fish and meat processing	
	8. Beer Production using Immobilized Cell	
	Technology.	
Unit IV	1.Microbial biomass production: mushrooms, SCP	
Applications of	2.Fermented foods from: meat and fish, bread,	
microbial	Vegetables (sauerkraut, cucumber), Legumes and Oil	
technology in	Seeds soya bean fermentations	
food process	3. Beverages	
operations and	a) Stimulant Beverages -coffee, cocoa and tea	
production,	fermentations	
biofuels and	b) Alcoholic beverages - Cider production	
biorefinery	4. Food additives and supplements	
	a) Lipids, Nucleosides, nucleotides and related	
	compounds- Vitamins	15
	b) Natural food preservatives- bacteriocins from lactic	
	acid bacteria – production and applications e.g. Nisin	
	c) Microbial production of colours and flavours.	
	d) Polyhydric alcohols: low-calorie sweetener	
	particularly useful for sweetening food products for	
	diabetics	
	e) Microbial exopolysaccharides - Xanthan gum	
	5. Process Food wastes- for bioconversion to useful	
	products (Compost, biofuels, biomass cheap source of	
	raw material in fermentation etc).	

- 1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts. Upper Saddle River, NJ: Prentice Hall.
- 2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology. Oxford: Pergamon Press.
- 3. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New York: McGraw-Hill.
- 4. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology. Boca Raton: CRC/Taylor & Francis.
- 5. Lee, Y. K. (2013). Microbial Biotechnology: Principles and Applications. Hackensack, NJ: World Scientific.
- 6. Alexander N. Glazer and Hiroshi Nikaido -Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd Edition
- 7. Michael Waites and Morgan, Rockney and Highton -Industrial microbiology : An Introduction
- 8. Robert Whitehurst and Maarten Van Oort Enzymes in food technology 2nd ed
- 9. Nduka Okafor Modern industrial microbiology and biotechnology Science Publishers, Enfield, NH, USA (2007)

Title	Details	Credits	Number of lectures
Unit 1	Introduction to intellectual property; types of IP:		15
Introduction to	patents, trademarks, trade secrets, copyright & related		
IPR	rights, industrial design, geographical indications,		
	Biodiversity importance and legislation, International		
	convention and treaties; plant variety protection and		
Unit 2	farmers rights act., traditional knowledge.		15
Patents	Basics of patents: eligibility criteria, classification of patents, categories, special patents and patenting		15
1 atents	biological products. Patentable and Non-patentable		
	inventions in India and abroad. Process of Patenting,		
	Patent Search and Inventor's homework, drafting patent		
	applications, patenting systems. Rights of the patent		
	holder, assignment and licensing of patents and patent		
	Infringement, case studies. Patent Agent.	4	
Unit 3	Patentability of Biotechnology Inventions in India,		15
Patentability of	Statutory Provisions Regarding Biotechnological		
Biotechnology	Inventions Under the Current Patent Act 1970 (as		
Inventions	Amended 2005). Biotechnological Inventions as		
	Patentable Subject Matter, Territorial Nature of		
	Patents,: From Territorial to Global Patent Regime,		
	Interpreting TRIPS in the Light of Biotechnology		
	Inventions, Feasibility of a Uniform Global Patent		
	System, Merits and Demerits of Uniform Patent Law,		
	Relevance of the Existing International Patent,		
	Tentative Harmonisation Efforts, Implications of		
Unit 4	Setting up a Uniform World Patent System.		15
Unit 4 Bioethics	Introduction, bioethics in health care- euthanasia, artificial reproductive technologies, prenatal diagnosis,		15
Dioetines	genetic screening, gene therapy, organ transplantation.		
	Ethics of clinical research, Bioethics in research –		
	cloning and stem cell research, Human and animal		
	experimentation, Agricultural biotechnology -		
	Genetically engineered food, environmental risk,		
	labelling and public opinion. Bioterrorism.		

Paper IV Intellectual property rights and Bioethics (PSBT 204)

- 1. Ganguli, P. (2001). *Intellectual Property Rights: Unleashing the Knowledge Economy*. Tata McGraw-Hill Publishing Company.
- Karen F. Greif, Jon F. Merz Current Controversies in the Biological Sciences_ Case Studies of Policy Challenges from New Technologies (Basic Bioethics)-The MIT Press (2007)
- 3. V. Sreekrishna Bioethics and Biosafety in Biotechnology-to New Age International Pvt Ltd Publishers (2007)
- 4. Padma Nambisan (Auth.) An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology- Academic Press (2017)
- 5. Kshitij Kumar Singh (auth.) Biotechnology and Intellectual Property Rights_ Legal and Social Implications-Springer India (2015)
- 6. David Castle The Role of Intellectual Property Rights in Biotechnology Innovation (2011)
- 7. Goel, D., & Parashar, S. (2013). *IPR, Biosafety and Bioethics*. Pearson Education India.
- 8. Singh, S. S. (2004). The Law of Intellectual Property Rights. *Deep and Deep Publications, New Delhi*, 96.
- 9. Talwar Shabana; *Intellectual Property Rights in WTO and Developing Countries*, Edition 2010, Serials Publications, New Delhi.
- 10. Helga Kuhse_ Udo Schüklenk_ Peter Singer_ (eds.) Bioethics_ An Anthology-Wiley-Blackwell (2016)
- 11. National Guidelines for Biomedical and Health Research on Human Participants (ICMR 2017)
- 12. ICMR-DBT National Guidelines for Stem Cell Research 2017

Practical III-PSBTP 201+ PSBTP 203

- 1. Using NCBI and Uniprot web resources
- 2. Introduction and use of various genome databases.
- 3. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/ TrEMBL, UniProt.
- 4. Similarity searches using tools like BLAST and interpretation of results.
- 5. Multiple sequence alignment using ClustalW.
- 6. Phylogenetic analysis of protein and nucleotide sequences.
- 7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).
- 8. Using RNA structure prediction tools.
- 9. Use of various primer designing and restriction site prediction tools.
- 10. Use of different protein structure prediction databases (PDB, SCOP, CATH). (Practicals in biostatistics could be clubbed into a test paper for 25M for the practical examinations/ problems could be asked for 5 / 10M)
- 11. Measures of central tendency: Mean, median and mode for grouped and ungrouped data
- 12. Measures of dispersion: Standard deviation for grouped and ungrouped data: standard value for the mean and proportion
 - Confidence limits for the mean and proportion
- 13. Probability: Normal distribution and Binomial distribution use of normal tables
- 14. Correlation and Regression: Estimation of correlation coefficient, to fit regression equations from bivariate data
- 15. Test of hypothesis: a) Z-test, b) t-test c) x^2 test d) f-test
- 16. Use of microorganism to produce a product. Detect utilization of substrate and formation of product at time intervals. Attempt purification of product e.g. enzyme.
- 1. Immobilize an organism / enzyme and detect the conversion of substrate to product.
- 2. Microbial pigment:
 - a. production factors affecting pH, temp, nutrients, static/ shaker conditions, submerged/ surface.
 - b. extraction soluble and insoluble pigments- organic solvent extraction and purification.
- 3. Demonstration of media optimization by Placket Burman test- demonstration
- 4. Methods for measurement of cell mass:
 - a. Direct physical measurement of dry weight, wet weight, or volume of cells after centrifugation.
 - b. Indirect measurement of chemical activity such as nutrient utilization and product synthesized.
 - c. Turbidity measurements employ a variety of instruments to determine the amount of light scattered by a suspension of cells.
- 5. Analytical techniques like HPLC, FPLC, GC, GC-MS *etc.* for measurement of amounts of products/substrates. Demonstration
- 6. Quality Assurance in a food industry Field visit and report
- 7. Method validation for any biochemical test (Accuracy, Limit of Detection, Limit of Quantitation, Specificity, Linearity and range, Ruggedness and Robustness) Report writing

4 credits

Practical IV PSBTP 202 + PSBTP 204

Plant tissue culture

- 1. Prepare culture media with various supplements for plant tissue culture.
- 2. Prepare explants of Valleriana wallichii for inoculation under aseptic conditions.
- 3. Isolate plant protoplast by enzymatic and mechanical methods and attempt fusion by PEG (available material).
- 4. Culture Agrobacterium tumefaciens and attempt transformation of any dicot species.
- 5. Generate a RAPD and ISSR profile of *Eremurus persicus* and *Valleriana wallichii*.
- 6. Prepare karyotypes and study the morphology of somatic chromosomes of *Allium cepa*, *A. sativum*, *A. tuberosum* and compare them on the basis of karyotypes.
- 7. Undertake plant genomic DNA isolation by CTAB method and its quantitation by visual as well as spectrophotometric methods.
- 8. Study genetic fingerprinting profiles of plants and calculate polymorphic information content. Demonstration

Animal cell culture:

- 9. Count cells of an animal tissue and check their viability.
- 10. Prepare culture media with various supplements for plant and animal tissue culture.
- 11. Prepare single cell suspension from spleen and thymus.
- 12. Monitor and measure doubling time of animal cells.
- 13. Chromosome preparations from cultured animal cells
- 14. Isolate DNA from animal tissue by SDS method.
- 15. Attempt animal cell fusion using PEG.
- 16. To study a patent and to develop a patent application for a product or process.
- 17. To write SOPs of 4 laboratory equipment or instruments.
- 18. Journal club- a minimum 2 weeks activity of reading and discussing research papers preferably with a mentor and making a poster in a group of 3/2 for presentation in form of Microsoft PowerPoint /coral draw. Poster prepared to be appended in the journal. Teachers are requested to encourage students to participate/ attend conferences/ seminars/ avishkar. The group of students to be evaluated for the same for 5M each in the practical examinations
- 19. Compilation of information on recommended biosafety practices in a Biotechnology/ Biology laboratory. (demonstration by field visit or video)