

The Kelkar Education Trust's V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for S Y B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 3

Course: Mechanics and Thermodynamics (Physics Paper-I)

Course Code	Paper Title	Credit
SPHT301	Mechanics and Thermodynamics	2

1. Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT301
iii) Course Title	: Mechanics and Thermodynamics
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

Programme: SYBSc	Semester: III
Course : Mechanics and Thermodynamics	Course Code : SPHT301

	Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA) 40 marks		End Semester Examination	Total				
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite	1.	Concepts of SHM and sim	ple	pendulum

- 2. Newton's laws of mechanics
- 3. Basic concepts of thermodynamics
- 4. Zeroth and first laws of thermodynamics

Cou	irse Objectives
1.	Introduction to compound pendulums
2.	Understand the complexity associated with system of particles and how to simplify that
	using the concept of centre of mass
3.	Explore various cases associated with SHM
4.	Acquire in-depth knowledge of laws of thermodynamics and related thermadynamic
	quantities
5.	Understand how various engines work
6.	Learn about situations in low temperature.
7.	Develop problem-solving skills in all above areas

Course Content					
Unit No.	Module No.	Content Lectures			
1 Mechanics	I	 Chapter 1: Compound pendulum 1.1 Expression for period, maximum and minimum time period 1.2 Centres of suspension and oscillations, reversible 	15		

V.G.Vaze College of Arts, Science and Commerce

		compound pendulum.	
		1.3 Kater's reversible pendulum, compound	
		pendulum and simple pendulum- a relative study.	
		Chapter 2 :System of particles	
		2.1 Center of Mass ,Motion of the Center of Mass	
		2.2 Linear momentum of a Particle, Linear momentum of a	
		System of Particles	
		2.3 Linear momentum wrt CM coordinate (i.e shift of	
		origin from Lab to CM), Conservation of Linear	
		Momentum	
		2.4 Some Applications of the Momentum Principle, System of	
		Variable Mass	
		2.5 Torque Acting on a Particle , Angular Momentum of a	
		Particle, Angular Momentum of System of Particles	
		2.6 Total angular momentum wrt CM coordinate,	
		Conservation of Angular Momentum	
		Chapter 3 :Oscillations	
		3.1 The Simple Harmonic Oscillator, Relation between Simple	
		Harmonic Motion and Uniform Circular Motion, Two Body	
		Oscillations	
		3.2 Damped Harmonic Motion	
		3.3 Forced Oscillations and Resonance	
		Chapter 4: Heat and Work	
		4.1 Review of zeroth and first law of thermodynamics	
		4.2 Conversion of heat into work, heat engine	
		4.3 Carnot's cycle: its efficiency	
		Chapter 5: Second law of thermodynamics	
		5.1 Statements, Equivalence of Kelvin and Plank statement	
		5.2 Carnot's theorem, Reversible and irreversible process	
2	П	5.3 Absolute scale of temperature	
Thermod-		Chapter 6: Entropy	15
ynamics I		6.1 Clausius theorem, Entropy	
		6.2 Entropy of a cyclic process, Reversible process, Entropy	
		change, Reversible heat transfer	
		6.3Principle of increase in entropy, generalized form of first	
		and second law, entropy change of an ideal gas, entropy of	
		steam	
		6.4 entropy and unavailable energy, entropy and	
		disorder, absolute entropy	
		Chapter 7 Third Law of Thermodynamics	
3	111	7.1 Third law of thermodynamics, Nernst heat theorem,	
Thermod-		Consequences of the third law	15
ynamics II		7.2 Maxwell's thermodynamic relations	
		7.3 Clausius – Clapeyron equation, Thermal Expansion	

V.G.Vaze College of Arts, Science and Commerce

Chapter 8 : Heat Engines
8.1 Steam engine, Rankine cycle
8.2 Otto engine, Efficiency of Otto cycle
8.3 Diesel cycle, Efficiency of Diesel cycle
8.4 Otto and diesel comparison
Chapter 9: Low temperature Physics
9.1 Different methods of liquefaction of gases, methods of
freezing, Cooling by evaporation, cooling by adiabatic
expansion
9.2 Joule - Thompson effect, JT effect of Van der Waal's gas,
9.3 Liquefaction of helium, properties and uses of liquid Helium

Semester III : Mechanics and Thermodynamics I (Paper Pattern)		
Duration: 2 hours	Marks: 60	
Q.1 (Unit 1)	15 marks	
Q.2 (Unit 2)	15 marks	
Q.3 (Unit 3)	15 Marks	
Q.4 Based on all module	15 Marks	

	Course Outcomes Students should be able to		
CO1	Understand the various concepts related to compound pendulum		
CO2	Derive expressions for linear momentum, angular momentum and torque with and		
	without CM frame		
CO3	Solve problems related to variable mass systems		
CO4	Solve DE of SHM for various cases		
CO5	Understand the various interpretations of the term "Entropy"		
CO6	Explain working of various engines through PV diagrams and derive expressions for their		
	efficiency		

Recommended Resources			
Reference Books	Main References:		
	<u>Unit 1:</u>		
	1. Resnick and Halliday : Physics – I		
	2. Mechanics – H. S. Hans and S. P. Puri, Tata McGraw Hill (2 nd ED.)		
	Unit 2 and 3		
	1. Thermal Physics, AB Gupta and H. Roy, Book and Allied (P) Ltd, Reprint		
	2008, 2009.		
	2. Heat thermodynamics and Statistical Physics, Brijlal, N.Subramanyam, P.		

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

S. Hemne, S. Chand, edition 2007.
Additional Reference :
Unit 1:
1. Mechanics by K.R Symon
 Classical Dynamics of particles and systems by Thornton and Marian, (CENGAGE Learning)
3. Mechanics and Electrodynamics Rev Edn. 2005 by Brijlal and Subramanyan and Jeevan Seshan
Unit 2 and 3:
4. Classical mechanics by Kleppener , Kollenkov
5. Basic Thermodynamics : Evelyn Guha (Narosa Publications)
6. A Treatise on heat : Meghanad Saha and BN Srivastava , 1969, India Press
7. Thermal physics by S C Garg, R M Bansal and C K Ghosh, McGraw Hill

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Rap

Prof S.G Bapat Vice-Chancellor Nominee

(Autonomous)

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 3

Course: Vector Calculus & Analog Electronics (Physics Paper-II)

Course Code	Paper Title	Credit
SPHT302	Calculus & Analog Electronics	2

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

1.Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT302
iii) Course Title	Calculus & Analog Electronics
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Semester: III
Course Code : SPHT302

Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total				
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite	1. Vector algebra	
	2. Basics electronics devises	

3. Simple integration and derivatives

Со	urse Objectives
1.	Understand the basic concepts of mathematical physics and their applications in physical situations.
2.	Understand the basic laws of electrodynamics and be able to perform calculations using them.
3.	Understand the basics of transistor biasing, operational amplifiers, their applications
4.	Understand the basic concepts of oscillators and be able to perform calculations using them.
5.	Demonstrate quantitative problem-solving skill in all the topics covered.

Course Content				
Unit No.	Unit No. Module Content			
1 Vector Calculus	I	Chapter 1: Vector Calculus 1.1 Line, Surface and Volume Integrals 1.2 The Fundamental Theorem of Calculus, The Fundamental Theorem of Gradient, The Fundamental Theorem of Divergence, The Fundamental Theorem of Curl (Statement and Geometrical interpretation is included, Proof of these theorems are omitted) 1.3 Problems based on these theorems Chapter 2: Curvilinear Coordinates	15	

V.G.Vaze College of Arts, Science and Commerce

		2.1 Cylindrical Coordinates	
		2.2 Spherical Coordinates	
		Chapter 3: Transistor Biasing	
		3.1 Transistor Biasing, Inherent Variations of Transistor	
		Parameters, Stabilisation, Essentials of a Transistor Biasing	
		Circuit, Stability Factor	
		3.2 Methods of Transistor Biasing, Base Resistor Method,	
		Emitter Bias Circuit, Circuit analysis of Emitter Bias	
		3.3 Biasing with Collector Feedback Resistor, Voltage	
2		Divider Bias Method, Stability factor for Potential Divider	
Analog		Bias	
Electronics	II	Chapter 4: General amplifier characteristics	15
I		4.1 Concept of amplification, amplifier notations	
		4.2 Current gain, Voltage gain, power gain	
		4.3 Input resistance, output resistance, general theory of	
		feedback	
		4.4 Reasons for negative feedback, loop gain	
		Chapter 5: Transistor Amplifier	
		5.1Practical circuit of transistor amplifier, phase reversal	
		5.2 Frequency response, Decibel gain and Band width	
		Chapter 6:Oscillators	
		6.1 Introduction, effect of positive feedback.	
		Requirements for oscillations,	
		6.2 Phase shift oscillator,	
		6.3 Wien Bridge Oscillator,	
		6.4 Colpitt's oscillator,	
		6.5 Hartley oscillator	
		Chapter 7: Operational Amplifier	
3		7.1 Introduction, Schematic symbol of OPAMP, Output	
Analog		voltage from OPAMP	15
Electronics II		7.2 AC analysis, Bandwidth of an OPAMP, Slew rate,	
		Frequency Response of an OPAMP, OPAMP with Negative	
		feedback,	
		7.3 Inverting Amplifier, Non-Inverting Amplifier,	
		Voltage Follower	
		7.4 Summing Amplifier, Applications of Summing	
		amplifier,	
		7.5 OPAMP Integrator and Differentiator,	
		7.6 Critical frequency of Integrator, Comparator	
		Total No. of Lectures	45

V.G.Vaze College of Arts, Science and Commerce

Semester III: Vector calculus & analog electronics (Paper Pattern)				
Duration: 2 hours	Marks: 60			
Q.1 (Unit 1)	15 marks			
Q.2 (Unit 2)	15 marks			
Q.3 (Unit 3)	15 Marks			
Q.4 Based on all module	15 Marks			

	se Outcomes ents should be able to
CO1	Solve the problems on vector integrations and use the different frame of system for
	different problem to simplify them.
CO2	Build the circuit using transistor for different type of biasing also use of transistor
	as amplifier for ac and dc
CO3	Understand the different type of oscillator and application of oscillator
CO4	Use of Op-amp as amplifier, addition, sub, differentiator and integrator.
CO5	Use of electronic devices to control and modify the analog signal.

Recommended Resources				
Reference	Main References:			
Books	<u>Unit 1:</u>			
	1. Introduction to Electrodynamics 3rd Ed by D.J. Griffith			
	<u>Unit 2:</u>			
	1. Principles of Electronics – V. K. Mehta and Rohit Mehta. (S.			
	Chand – Multicoloured illustrative edition)			
	<u>Unit 3:</u>			
	1. Electronic devices and circuits – An introduction Allan			
	Mottershead			
	Additional references:			
	1. Electronic principles by Malvino			
	2. Operational amplifiers by R. Gayakwad			

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Bar

Prof S.G Bapat Vice-Chancellor Nominee

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 3

Course: Applied Physics – I(Physics Paper-III)

Course Code	Paper Title	Credit
SPHT303	Applied Physics – I	2

1.Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT303
iii) Course Title	: Applied Physics – I
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Programme: SYBSc	Semester: III
Course : Applied Physics –I	Course Code : SPHT303

5	Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total			
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite

- 1. Idea of sound wave, LASER & optical fibre
 - 2. Crystals & its types
- 3. Idea of nanotechnology

Со	urse Objectives
1.	Students will be exposed to concept of Acoustics.
2.	Students will appreciate the role of Physics in 'interdisciplinary areas related to materials and Acoustics etc.
3.	Students should familiar with LASER concepts and its principle.
4.	Students should expose to crystal structure so that they can understand the basics of crystallography.
5.	Students should understand the basic concepts of nanotechnology.

Course Content				
Unit No. Module Content		Content	Lectures	
		Chapter 1:Acoustics of Buildings		
		1.1 Reverberation,		
1		1.2 Explanation of Sabine's formula,& Importance		
Acoustics, LASER		of Sabine's Formula,	15	
and Fibre optics	I	1.3 Absorption Coefficient,	15	
		1.4 Acoustics of Buildings,		
		1.5 Factors Affecting Acoustics of Buildings,		
		1.6 Sound Distribution in an Auditorium.		

V.G.Vaze College of Arts, Science and Commerce

		 Chapter 2 :Laser: 2.1 Introduction, 2.2 Transition between Atomic energy states, 2.3 Principle of Laser, 2.4 Properties of Laser: Coherence Properties of LASER, Spatial Coherence Length, Directionality, Intensity, 2.5 Helium–Neon Laser, 	
2 Fibre optics and crystal physics	II	 2.6 Application of Laser: Holography Chapter 3: Fibre Optics: 3.1 Light propagation through Fibres, 3.2 Fibre Geometry, 3.3 Internal reflection, 3.4 Numerical Aperture, 3.5 Step-Index and Graded-Index Fibres, 3.6 Applications of Optical Fibres. Chapter 4: Crystal Physics 4.1 Lattice points and space lattice, 4.2 The basis and crystal structure, 4.3 Unit Cells and lattice parameters, 4.4 Primitive Cells, Crystal Systems, 4.5 Crystal Symmetry, Bravais space lattices 4.6 Metallic crystal structures, 4.7 Relation between the density of crystal material and lattice constant in a cubic lattice, 4.8 Directions, Planes, Miller Indices, 4.9 Important planes in simple cubic structure, 4.10 separation between lattice planes in a cubic crystal 	15
3 Nanotechnology	111	 5: Introduction to Nanotechnology 5.1 Introduction 5.2 Need of Nanotechnology 5.3 Approaches in Nanotechnology 5.4 What are Nonmaterial's 5.5 Physical methods for synthesis of nanoparticles (Qualitative) 5.6 Tools to analyze nanoparticles (SEM, TEM, STM and AFM) 5.7 Applications of Nanotechnology in different fields 	15
		Total No. of Lectures	45

V.G.Vaze College of Arts, Science and Commerce

Semester III : Applied Physics – I Paper III (Paper Pattern)	
Duration: 2 hours	Marks: 60
Q.1 (Unit 1)	15 marks
Q.2 (Unit 2)	15 marks
Q.3 (Unit 3)	15 Marks
Q.4 Based on all module	15 Marks

	Course Outcomes Students should be able to		
CO1	Understand the basic concept of Acoustics of Buildings.		
CO2	Understand the basic concept of Fibre Optics:		
CO3	Know the properties and importance of LASER.		
CO4	Understand the basics of crystallography of elements		
CO5	Know the different technique of synthesis of nanomaterial.		
CO6	Know the different technique of characterization of nanomaterial.		

Recommended	Resources
Reference	Main References:
Books	Unit I:
	Chapter 1
	RK: 5.9, 5.10, 5.12, 5.13, 5.14 & 5.15
	RK : Properties of matter and Acoustics – R Murugeshan and K. Shivaprasath, S
	Chand & Co.Ltd. (2005-Ed)
	Chapter 2
	SP:9.1,9.2,9.3,9.4,9.4.1,9.4.2,9.4.3,9.4.4,9.6&9.10
	SP: Modern Physics Concept and Applications – Sanjeev Puri, Narosa
	Publication
	Unit II:
	Chapter 3
	SP: 13.3, 13.3.1, 13.3.2, 13.3.3, 13.5 & 13.9
	SP: Modern Physics Concept and Applications – Sanjeev Puri, Narosa
	Publication.
	Chapter 4
	SOP : Chapter 4 : II,III,IV,V, VI, VII, XIV,XV, XVI, XVIII, XX, XXII, XXV,XXVI
	Solid State Physics – S.O. Pillai, New Age International Publishers
	Unit III:
	Principles and Practices, Sulabha Kulkarni, Capital Publishing Company
	(Chapter 3: 3.1,3.2, 3.3,3.4,3.5 and 3.6),Chapter 6 & 10
	Solid State Physics by Rita John, McGraw Hill

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Bap

Prof S.G Bapat Vice-Chancellor Nominee

(Autonomous)

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 3

Course: Practical course -III (Practical's based on three courses)

Course Code	Paper Title	Credit
SPHP03	Practical course –III	3

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

1.Syllabus as per Choice Based Credit System

i) Name of the Dreaman	
i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHP03
iii) Course Title	Practical's based on three courses Practical course –III
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 03
vii) No. of lectures per Unit	: -
viii) No. of Practical per week	: 02
ix) No. of Tutorial per week	:
	Semester End Exam:150 marks
	Experiment 1 (group A): 40 Marks
	Experiment 2(group B): 40 Marks
	Experiment 3(group C): 40 Marks
	Journal : 15 Marks
2 Scheme of Examination	: Viva : 15 Marks
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

(Autonomous)	

No. 1 Y by 2 Bar 3 Sea	scription: Experiment from group A y bending. r pendulum arle's experiment: determination of Y t spiral spring(Y) Imholtz resonator- determination of unknown frequency.			
1 Y by 2 Bar 3 Sea	r pendulum arle's experiment: determination of Y t spiral spring(Y)			
2 Bar 3 Sea	r pendulum arle's experiment: determination of Y t spiral spring(Y)			
3 Sea	arle's experiment: determination of Y t spiral spring(Y)			
	t spiral spring(Y)			
4 Flat	Imholtz resonator- determination of unknown frequency.			
5 Hel				
6 Mo	oment of Inertia of compound pendulum by method of coincidence.			
7 Ver	rification of Stefan's law (electrical method)			
8 Ten	mperature coefficient of resistance of conducting material			
9 Cha	arging and discharging of capacitor through R			
10 LCR	R parallel resonance.			
11 Figu	ure of merit of a mirror galvanometer.			
12 Det	termination of absolute capacitance using BG			
13 Me	Measurement of resistance of galvanometer (G by shunting)			
	Experiment from group B			
1 Pas	Experiment from group B Passive low pass filter			
	ssive high pass filters.			
	ssive high pass filter.			
	-amp: Inverting amplifier with different gains and Difference amplifier			
	-amp: Non-inverting amplifier with different gains and voltage follower			
·	-amp: Integrator and Differentiator			
	amplifier: determination of bandwidth			
	amplifier: variation of gain with load			
	sajous figures using CRO.			
	ase shift oscillator			
	pitt's oscillator			
	rtley oscillator			
	Experiment from group C			
1 Las	er experiments: straight edge, single slit, ruler grating			
2 LAS	SER diffraction using transmission grating			
3 Opt	tical fibre: transmission of signal			

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

4	Concept of beats			
5	Coupled oscillations and resonance (Resonance Pendulum)			
6	Hysteresis using magnetometer			
7	Determination of dielectric constant.			
8	To study Thermistor characteristic Resistance vs Temperature			
9	Comparative study of Surface tension of various fluid.			
10	Diode as temperature sensor.			
11	Synthesis of materials - mini project - thin film/nano materials/bulkpowders using			
	different routes etc. (equivalent to 2 practical sessions).			
12	Visit to research institutes (equivalent to three practical sessions)/Assignment & literature			
	survey (equivalent to 2 practical sessions).			
	Skill Experiments			
1	Soldering technique			
2	Wiring of a simple circuit using breadboard			
3	Use of DMM, Component testing, color code of resistors, capacitors.			
4	Use of oscilloscope as component tester, phase measurements.			
5	Travelling microscope (radius of capillary)			
6	Spectrometer: mean μ of yellow doublet of mercury source.			
7	Construction entired loweling and Churcher's method			
	Spectrometer: optical leveling and Shuster's method			
8	Drawing of graph on semi logarithmic / logarithmic scale.			

For practical examinations, the learner will be examined in three experiments (one from

each group).

Each experiment will be of three hours' duration .

A Minimum 7 from each group and in all minimum 21 experiments must be reported in journal.

Minimum 6 skill experiments are required to be completed compulsorily. Students are required to report all these experiments in the journal. Evaluation in viva voce will be based on regular experiments and skill experiments.

A learner will be allowed to appear for the semester practical examination only if he

/she submit a certified journal of Physics or a certificate that the learner has completed

the practical course of Physics Semester III as per the minimum requirements.

(Autonomous)

Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activity.

1) Collect the information of at least five Physicists with their work or any three events on physics, report that in journal.

2) Execute a mini project to the satisfaction of teacher in-charge of practical.

3) Participate in a study tour or visit & submit a study tour report.

Recommended Resources					
Reference	1) Advanced course in Practical Physics D. Chattopadhya,				
Books	PC Rakshit& BSaha. (6th Edition) Book and AlliedPvt.Ltd.				
	2) B.Sc Practical Physics – Harnam Singh S.Chand& Co. Ld.2001				
	3) A test book of advanced practical PHYSICS _ SAMIR				
	Kumar Ghosh, New Central Book Agency (3 rd edition)				
	4) B.Sc. Practical Physics – CL Arora (1 st Edition) -2001				
	S.Chand and Co Lt				

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Bar

Prof S.G Bapat Vice-Chancellor Nominee

(Autonomous)

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for S Y B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 4

Course: Optics and Digital Electronics (Physics Paper-I)

Course Code	Paper Title	Credit
SPHT401	Optics and Digital Electronics	2

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

1.Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT401
iii) Course Title	Optics and Digital Electronics
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Programme: SYBSc	Semester: IV
Course : Optics and Digital Electronics	Course Code : SPHT401

5	Sch	:hin eme Nee	ē	Continuous Internal Assessment (CIA) 40 marks					End Semester Examination	Total
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite

1. Basic concepts of interference and diffraction of light

- Understanding of electromagnetic wave nature of light
 Basic concepts of digital electronics and logic gates

Co	urse Objectives
1.	Understand the Fresnel and Fraunhoffer type of diffraction and their applications
2.	Acquire in depth knowledge of production, detection, analysis and applications of polarized
	light
3.	Understand the working of digital circuits
4.	Understand the construction and working of flip-flop, counters and register circuits.
5.	Demonstrate quantitative problem-solving skills in all the topics covered.

Course Content				
Unit No.	Module No.	Content	Lectures	
1 Diffraction	I	 Chapter 1: Introduction to Diffraction 1.1 Introduction, Huygens's - Fresnel theory 1.2 Distinction between interference and diffraction 1.3 Fresnel and Fraunhoffer types of diffraction Chapter 2: Fresnel Diffraction 2.1 Fresnel's assumptions, Rectilinear propagation (Half period zones) of light 	15	

V.G.Vaze College of Arts, Science and Commerce

			I
		2.2 Diffraction pattern due to straight edge, Positions of	
		maxima and minima in intensity, Intensity at a point	
		inside the geometrical shadow(straight edge),	
		2.3 Diffraction due to a narrow slit	
		2.4 Diffraction due to a narrow wire	
		Chapter 3:Fraunhoffer Diffraction	
		3.1 Introduction, Fraunhoffer diffraction at a single	
		slit Intensity distribution in diffraction pattern due to	
		a single slit	
		3.2 Fraunhoffer diffraction at a double slit, Distinction	
		between single slit and double slit diffraction pattern	
		and missing orders	
		3.3 Plane diffraction Grating, Theory of plane transmissior	
		grating, Width of principal maxima	
		Chapter 4:Polarization-I	
		4.1 Introduction of Polarization, Natural light as Un	
		polarized and Polarized light	
		4.2 Brewster's law, Polaroid sheets	
		4.3 Prism and grating spectra	
		4.4Types of polarization: Plane polarized light, Circularly	
		polarized light, Elliptically polarized light, Partially	
		polarized light,	
		4.5 Production of Plane polarized light, Polarization by	
		reflection from dielectric surface, Polarization by refraction	
		-pile of plates, Polarization by scattering, Polarization by	
		selective Absorption, Polarization by double refraction	
		Chapter 5: Polarization-II	
2	П	5.1Polarizer and Analyzer, Malus' Law, Anisotropic crystal,	
Polarization		Calcite crystal, Optic Axis, Double refraction in calcite	15
		crystal	
		5.2 Huygens' explanation of double refraction,	
		Ordinary and Extra ordinary rays, Positive and	
		Negative crystals	
		Chapter 6: Wave plates	
		6.1 Superposition of waves linearly polarized at right	
		angles, Superposition of e-Ray and o-Ray, Retarders,	
		6.2 Quarter wave plate, Half wave plate	
		6.3 Production of linearly polarized light, Production of	
		elliptically polarized light, Production of circularly	
		polarized light	
		6.4 Analysis of polarized light	
		6.5 Applications of polarized light	
3		Chapter 7 Number System	15
~			10

V.G.Vaze College of Arts, Science and Commerce

Digital Electronics	 7.1 Introduction, Binary number system, Arithmetic building blocks, Types of registers, Digital IC signal levels 7.2 Binary to Decimal, Decimal to binary 7.3 Hexadecimal number, Hexadecimal to decimal Conversion, Decimal to hexadecimal conversion, Hexadecimal to binary conversion, Binary to hexadecimal conversion 7.4 Binary addition, Unsigned binary numbers, Sign magnitude numbers, 1's complement, 2's complement , Converting to and from 2's complement representation , 2's complement arithmetic, The adder-subtractor (ignore IC specific diagrams) 	
	Chapter 8 :Flip Flops and Counters 8.1RS Flip-Flops (only NOR gate latch, NAND gate latch), Gated Flip-Flops, Edge-Triggered RS Flip-Flop, Edge- Triggered D Flip-Flop, Edge-Triggered J-K Flip-Flop, JK Master- Slave Flip-Flops, Bounce elimination switch 8.2 Asynchronous counter -3 bit (ignore IC specific diagrams), Synchronous counter only mod 8, Decade Counters Mod5 and Mod10	

Semester IV : Optics & Digital electronics	(Paper Pattern)
Duration: 2 hours	Marks: 60
Q.1 (Unit 1)	15 marks
Q.2 (Unit 2)	15 marks
Q.3 (Unit 3)	15 Marks
Q.4 Based on all module	15 Marks

Cours	Course Outcomes					
Stude	Students should be able to					
CO1	Derive expressions for positions of maxima and minima due to diffraction at various					
	obstacles and determine the intensity profile					
CO2	Understand various ways of producing polarized light					
CO3	Explain how to detect and analyse polarised light					
CO4	Convert decimal numbers to binary, octa decimal, hexadecimal and vice-versa.					
CO5	Perform mathematical operations on binary numbers					
CO6	Understand working of various digital electronic-components and explain it through timing					
	diagrams (wherever applicable).					

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Recommended	Resources
Reference	 Main References: <u>Unit 1 and 2</u>: A Text Book Of Optics By: Dr.N.Subrahmanyam, Brijlal, Dr M.N.
Books	Avadhaanulu (S.Chand, 25 th Revised edition2012 Reprint 2013) AJOY GHATAK: OPTICS (5thEdition) <u>Unit 3:</u> Digital Principles and Aplications By Leach, Malvino, Saha 6th edn. <u>Additional References:</u> Digital Fundamentals by Thomas L Floyd 10th edn. (Additional Reading) RPJ – Modern Digital Electronics by R P Jain 4th edn. (Additional Reading)

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Bapat

Prof S.G Bapat Vice-Chancellor Nomin

The Kelkar Education Trust's V G Vaze College of Arts, Science and Commerce (Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 4

Course: Quantum Physics (Physics Paper-II)

Course Code	Paper Title	Credit
SPHT402	Quantum Physics	2

1.Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT402
iii) Course Title	Quantum Physic
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Programme: SYBSc	Semester: IV
Course : Quantum Physics	Course Code : SPHT402

	Teaching Scheme (Hrs/Week)		Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total			
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15 15 10 -			60	100	
Ма	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite

- 1. calculus
- 2. linear algebra
- Ordinary Differential Equation and partial Differential Equation
 Probability and statistics.

Со	Course Objectives		
1.	Understand the postulates of quantum mechanics and to understand its importance in explaining significant phenomena in Physics.		
2.	Demonstrate quantitative problem-solving skills in all the topics covered.		

		Course Content			
Unit No.	Module No.	Content			
1 The Schrodinger Wave Equation	I	 Chapter 1 :The Schrodinger wave equation 1.1. Concept of wave function, Born interpretation of wave function. 1.2 Concepts of operator in quantum mechanics examples – position, momentum and energy operators. 1.3. Eigen value equations, expectation values of operators. 1.4. Schrodinger equation. Chapter 2 :Formulation 2.1 Postulates of Quantum Mechanics. 2.2Analogy between Wave equation and Schrodinger 	15		

V.G.Vaze College of Arts, Science and Commerce

		equation. 2.3 Time dependent and time independent (Steady State) Schrodinger equation, Stationary State, Superposition principle. 2.4 Probability current density, Equation of continuity and its physical significance.	
2 Applications of Schrodinger steady state equation - I	II	 Chapter 3:Applications of Schrodinger equation 3.1 Free particle 3.2Particle in infinitely deep potential well (one - dimension). 3.3. Particle in finitely deep potential well (one - dimension) Chapter 4: Applications of Schrodinger equation-I 4.1Step potential. 4.2Particle in three-dimension rigid box, degeneracy of energy state. 	15
3 Applications of Schrodinger steady state equation –II	III	 Chapter 5 Applications of Schrodinger equation-II 5.1 Potential barrier (Finite height and width) penetration and tunnelling effect (derivation of approximate transmission probability) Chapter 6 : Applications of Schrodinger equation-III 6.1 Theory of alpha particle decay from radioactive nucleus. 2 Harmonic oscillator (one-dimension), correspondence principle 	15
		Total No. of Lectures	45

Semester IV: Quantum Physics Paper	(Paper Pattern)
Duration: 2 hours	Marks: 60
Q.1 (Unit 1)	15 marks
Q.2 (Unit 2)	15 marks
Q.3 (Unit 3)	15 Marks
Q.4 Based on all module	15 Marks

	Course Outcomes Students should be able to			
CO1	Solve problems on different operator, eigenvalues and Eigen function.			
CO2	Find out the expectation value of particle for different system			
CO3	Understand the nature of particle trapped in some potential or particle in close			
	system also in open system.			
CO4	How the transmission of particle occur with different energy. Solve the problems			
	based on that.			

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

CO5 Problems on alpha decay and the expectation value of different energy in HO.

Recommended	Resources
Reference	1. Concepts of Modern Physics – A. Beiser (6th Ed.) Tata McGraw Hill.
Books	2. Quantum Mechanics – S P Singh, M K Bagade, Kamal Singh, - S.
	Chand : 2004 Ed.
	3. Quantum Mechanics of Atoms, Molecules, Solids, Nuclei and
	particles By R. Eisberg and R. Resnik Published by Wiley.
	5. Introduction to Quantum Mechanics By D. Griffiths Published by
	Prentice Hall.
	6. Quantum Mechanics By Ghatak and Lokanathan Published by Mc.
	Millan.
	7. Quantum Mechanics By L. I. Schiff.
	8. Quantum Mechanics By Powell and Crasemann, Addison-Wesley
	Pub. Co.

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Bap

Prof S.G Bapat Vice-Chancellor Nominee

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 3

Course: Applied Physics – II (Physics Paper-III)

Course Code	Paper Title	Credit
SPHT403	Applied Physics – II	2

Syllabus as per Choice Based Credit System

i) Name of the Programme	: S.Y.B.Sc
ii) Course Code	: SPHT403
iii) Course Title	: Applied Physics – II
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 02
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 03
ix) No. of Tutorial per week	:
	Semester End Exam:60 marks (4 Questions of 15 marks)
	Internal Assessment 40 marks: (Test 15 marks,
	Project/ Assignment 15 marks
2 Scheme of Examination	: Class Participation: 10 marks)
3 Special notes, if any	: No
4 Eligibility, if any	As laid down in the College : Admission brochure / website
5 Fee Structure	As per College Fee Structure : specifications
6 Special Ordinances / Resolutions, if any	: No

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

Semester: IV
Course Code : SPHT403

5	eac Sch Irs/N	eme	è.	Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total		
L	Т	Ρ	С	CIA-1	CIA-2	CIA-3	CIA-4	Lab	Written	
3	-	3		15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

Prerequisite1. Basic idea about matter & its properties2. Basic idea about gates

Со	Course Objectives		
1.	Understand the importance of peripheral devices in Microprocessor 8085.		
2.	Understand the construction and working of basic Microprocessor 8085.		
3.	Understand the Internal structure of 8085.		
4.	Know the different Instruction sets of 8085.		

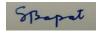
	Course Content				
Unit No.	Unit No. Module Content				
1	Ι	Chapter 1:Logic devices for interfacing 1.1Tristate device 1.2 Registors 1.3 Buffer 1.4 Multiplexer and Demultiplexer 1.3Bus organized structure Chapter 2 : Building Concept of Microprocessor 2.1 Introduction, 2.2 Study of Memory, 2.3 Input Device, Output Device, Input/output Device Central Processing Unit.	15		
2	II	Microprocessors	15		

V.G.Vaze College of Arts, Science and Commerce

		Chapter 3: 8085Microprocessor	
		3.1 Introduction,	
		3.2 Features of Inter 8085,	
		3.3 Pin Diagram of 8085,	
		3.4 8085 CPU Architecture,	
		3.5 Arithmetic and Logical Group (ALU, Accumulator,	
		Temporary Register, Flag Register (PSW)), Register	
		Group (Temporary Registers (W and Z),	
		3.6 General purpose registers, Special Purpose registers)	
		,	
		3.7 Interrupt Control,	
		3.8 Serial I/O Control Group,	
		3.9 Instruction Register,	
		3.10 Decoder and Control Group (Instruction Register,	
		Instruction Decoder, Timing and Control)	
		Chapter 4 : 8085 Instruction Set	
		4.1 Introduction,	
		4.2 Flowchart,	
		4.3 Classification of Instruction Set (Data Transfer	
		Group, Arithmetic Group, Logical Group, Branching	
3		Group, Stack and Machine Control Group),	
•		4. 4 Notations used in Instructions and Opcode,	15
		4.5 Data Transfer Group,	
		4.6 Program Examples for Data Transfer Group,	
		Arithmetic Operation Group , Branch Group, Logical	
		Group,	
		4.7 Addressing Modes,	
		4.8 8085ProgrammersModel.	
		Total No. of Lectures	45

Semester IV: Applied Physics II – (Paper Pattern)				
Duration: 2 hours	Marks: 60			
Q.1 (Unit 1)	15 marks			
Q.2 (Unit 2)	15 marks			
Q.3 (Unit 3)	15 Marks			
Q.4 Based on all module	15 Marks			

	se Outcomes ents should be able to
CO1	Understand the concepts of peripheral devices
CO2	Understand the internal structure of 8085 microprocessor
CO3	Understand the instruction set of 8085 microprocessor
CO4	Understand the data transfer group in 8085 microprocessor


Recommended Re	esources
Reference Books	Reference Book: V.J. Vibhute & P.B. Borole, Fifth RevisedEdition
	Unit : I
	Chapter 3: 3.1, 3.2 , 3.3 (3.3.1 , 3.3.2 , 3,.3.3) , 3.4. , 3.5, 3.6, 3.7
	Unit : II
	Chapter 4: 4.1 , 4.2 , 4.3. , 4.4 , 4.5 (4.5.1 , 4.5.2 , 4.5.3 , 4.5.4) , 4.6 (4.6.1 , 4.6.2
	, 4.6.3,4.7 , 4.8 , 4.9 (4.9.1 , 4.9.2 , 4.9.3)
	Unit : III
	Chapter 6 : 6.1 , 6.2 , 6.3 6.4 , 6.5 , 6.6 , 6.7 , 6.8 (6.8.1 , 6.8.2 , 6.8.3, 6.8.8 , 6.8.9,
	6.8.10 , 6 .8.11 (A part Block Transfer) , 6.9 (6.9.1 upto 6.9.19) 6.12 ,6.13

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Prof S.G Bapat Vice-Chancellor Nominee

The Kelkar Education Trust's V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for SY B.Sc

(June 2020 Onwards)

Program: B.Sc

Semester 4

Course: Practical course –IV (Practical's based on three courses)

Course Code	Paper Title	Credit
SPHP04	Practical course –IV	3

1.Syllabus as per Choice Based Credit System

i) Name of the Programme	Name of the Programme : S.Y.B.Sc	
ii) Course Code	: SPHP04	
iii) Course Title	Practical's based on three courses Practical course –IV	
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed	
v) References and additional references	: Enclosed in the Syllabus	
vi) Credit structure	:	
No. of Credits per Semester	: 03	
vii) No. of lectures per Unit	: -	
viii) No. of Practical per week	: 02	
ix) No. of Tutorial per week	:	
	Semester End Exam:150 marks	
	Experiment 1 (group A): 40 Marks	
	Experiment 2(group B): 40 Marks	
	Experiment 3(group C): 40 Marks	
	Journal : 15 Marks	
2 Scheme of Examination	: Viva : 15 Marks	
3 Special notes, if any	: No	
4 Eligibility, if any	As laid down in the College : Admission brochure / website	
5 Fee Structure	As per College Fee Structure : specifications	

(Autonomous)

6 Special Ordinances / Resolutions, if any : No

	List of Experiments	
Sr.	Description: Experiment from group A	
No.		
1	Optical lever: determination of µ	
2	Cylindrical obstacle: determination of λ	
3	Single slit diffraction	
4	Fresnel's bi-prism: determination of λ	
5	Determination of Couchy's constants.	
6	R.P. of telescope.	
7	Brewster's law: determination of μ	
8	Polarimeter	
9	Laser beam profile (Divergence and Intensity profile using LDR)	
10	Determination of wavelength of sodium using grating	
11	Determination of R.I. of liquid by laser	
12	Optical lever: determination of μ	
	Group B Experiments	
1	Square wave oscillator using gates.	
2	Half adder and full adder (7486,7408)	
3	Study of MS-JK flip flop	
4	Study of 3:8 Decoder(74LS138) and 8:3 Priority Encoder(74LS148)	
5	4 -bit One's complement using EX-OR gates	
6	Counters- mod 2,5 and10	
7	Capacitance by series bridge	
8	Op-Amp as Astable multivibrator	
9	Op-Amp as Schmitt trigger	
10	C1/C2 using De-Sauty's method	
11	Verification of maximum power transfer theorem	
	Experiment from group C	
1	Study of 8085 microprocessor kit and commands.	
2	8 -bit addition, subtraction, multiplication	
3	Two digit Decimal addition, subtraction.	
4	Memory blocks transfer from one location to another.	

V.G.Vaze College of Arts, Science and Commerce

(Autonomous)

5	Find largest/smallest number in given block.	
6	Find number of positive/negative, odd/even elements in given block.	
7	Arrange given number in ascending/descending order	
8	(Note: Use 8085 kit or any 8085 simulator to perform practical)	
9	Use of initial magnetization curve to find flux in core	
10	Project on a topic (equivalent to three practical sessions)	
11	Visit to research institutes (equivalent to three practical sessions)	
12	Assignment& literature survey (equivalent to 2 practical sessions).	
13	Plotting and analysis of detector data (from University /research institutions)	
	Demonstration experiments	
1	Error analysis of a given experiment	
2	Wave form generator using Op-amp	
3	PC simulations: graph, curve fitting etc.	
4	Straight edge Fresnel diffraction	
5	First order active filter.	
6	Use of DAD instruction in 8085.	
7	Error analysis of a given experiment	

Recommended Resources		
Reference	1. Advanced course in Practical Physics D. Chattopadhya,	
Books	PC Rakshit& BSaha. (6 th Edition) Book and AlliedPvt.Ltd.	
	2. B.Sc PRACTICAL Physics – Harnam Singh S.Chand& Co. Ld.2001	
	3. A test book of advanced practical PHYSICS _ SAMIR	
	Kumar Ghosh, New Central Book Agency (3 rd edition)	
	4. B.Sc. Practical Physics – CL Arora (1 st Edition) -2001 S.Chand and	
	CoLtd.	
	5. PracticalPhysics CL Squires (3 rd Edition) CambridgeUniversity	
	6. University Practical Physics – DC Tayal. HimalayaPublication	
	7. Advanced Practical Physics –Worsnop&Flint.	

For practical examinations, the learner will be examined in three experiments, (one from each group). Each experiment will be of three hours' duration.

A Minimum 7 from each group and in all minimum 21 experiments must be reported in journal.

Miimum 5 Demo experiments are required to be completed compulsorily. Students are required to report all these experiments in the journal. Evaluation in viva voce will be based on regular experiments and skill experiments.

A learner will be allowed to appear for the semester and practical examination only if he submits a certified journal of Physics or a certificate that the learner has completed the practical course of Physics Semester III as per the minimum requirements.

Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activity.

1) Collect the information of at least three events on physics, report that in journal.

2) Execute a mini project to the satisfaction of teacher in-charge of practical.

3) Participate in a study tour or visit & submit a study tour report.

Recommended Resources		
Reference	1. Advanced course in Practical Physics D. Chattopadhya,	
Books	PC Rakshit& BSaha. (6 th Edition) Book and	
	AlliedPvt.Ltd.	
	2. B.Sc PRACTICAL Physics – Harnam Singh S.Chand& Co. Ld.2001	
3. A test book of advanced practical PHYSIC	A test book of advanced practical PHYSICS _ SAMIR	
	Kumar Ghosh,New Central Book Agency (3 rd edition)	
	4. B.Sc. Practical Physics – CL Arora (1 st Edition) -2001 S.Chand and	
	CoLtd.	
	5. PracticalPhysics CL Squires (3 rd Edition) CambridgeUniversity	
	6. University Practical Physics – DC Tayal. HimalayaPublication	
	7. Advanced Practical Physics –Worsnop&Flint.	

This is the Final syllabus which has been approved by the following BOS Members:

- 1. Dr. Suresh Kadam : Head Department of Physics
- 2. Prof S Bapat (Vice-Chancellor Nominee)
- 3. Dr. Sunil Patange : Subject expert from other university (DRBAMU)
- 4. Dr. Ravi Kawale: Subject expert from other university (DRBAMU)
- 5. Mr Gangadhar Nair : Industry sector
- 6. Dr. K.G.Bhole (Faculty Member Ex HOD)
- 7. Dr. Manoj P. Mahajan: Faculty Member
- 8. Mr. Ashitosh Trigune : Faculty Member
- 9. Mr. Mahesh Kedare : Faculty Member

Dr.S N Kadam Chairmen BOS Physics

Prof S.G Bapat Vice-Chancellor Nominee