Tonio		
I ODIC	•	

Q.1	Define the following terms:		
	a)Oxidation b) Reduction c) Oxidation number d) Oxidising agent e)		
	Reducing agent f) Redox reaction		
Ans.	a)Oxidation : It is defined as a process in which an atom or an ion losses one		
	more electrons.		
	b)Reduction : It is defined as a process i	n which an atom or an ion accepts one or	
	more electrons.		
		It is defined as an apparent charge present	
	on an atom or an ion of an element in a o	compound	
	atom in a molecule or ion is defined as the		
number of charges it would carry if electrons were completely transferred. d) Oxidising agent : It is defined as a species that accept electron(s) a			
e) Reducing agent : It is defined as a species that losses electron(s)			
	other substance to accept electron(s) OR Reducing agent may also be defined as a substance which reduces other substance		
	and itself gets oxidized by loss of electro(s).		
	f)Redox reaction : The chemical reactions in which oxidation and reduction		
	reactions occur simultaneously are called redox reaction.		
Q.2	Distinguish between oxidation reaction and reduction reaction.		
	Oxidation	Reduction	
	By old concept:		
	i) Addition of oxygen	i) Addition of hydrogen	
	i) Removal of hydrogen	ii) Removal of oxygen	
	iii) Addition of electronegative element	iii) Addition of electropositive element	
	iv) Removal of electropositive element	iv) Removal of electronegative element	
	By modern electronic concept:		
	i)Lose of one or more electrons	i)gain of one or more electrons	
	ii)Increase in oxidation number or	ii)Decrease in oxidation number or	
	positive charge	positive charge	

Q.3	Give the characteristics of oxidising agents and reducing agent.			
Ans.	Characteristics of oxidising agent (oxidant)			
	a)It accepts electrons			
	b)It itself undergo reduction			
	c)It causes oxidation			
	d)It undergoes decrease in oxidation number			
	Characteristics of reducing agent (reductant)			
	a)It loses electrons			
	b)It itself undergo oxidation c)It causes reduction			
	d)It undergoes an increase in oxidation number			
Q.4	Give the rules to assign the oxidation number of an element.			
Ans.				
A115.	 b)The oxidation number of alkali metals (ie.Li, Na, K, Rb, Cs, Fr is alwys +1) c)The oxidation number of alkaline earth metals ie.Mg, Ca, Sr, Ba and Ra is always 			
	+2			
	d) The oxidation number of an atom in a monoatomic ion is equal to its charge.			
	e)The oxidation number of oxygen in all oxides is ' -2 ' but in peroxides like BaO ₂ ,			
	H_2 , O_2 etc. and in superoxides like KO_2 etc. it is ' \neq 1'			
	f)The oxidation number of hydrogen is +1 but in metallic hydrides like CaH, Na			
	BeH ₂ etc. it is ' -1 '.			
	g)The oxidation number of fluorine is always '- 1' in all its compounds, while other			
	halogens like Cl, Br , I along with 1' oxidation number, they may have positive			
	oxidation state.			
	h)The algebraic sum of all oxidation states of all atoms in a neutral molecule is zero			
	while for a polyatomic ion, it is equal to the net charge on the ion.			
Q.5				
Q.5	Identify the oxidising agents and reducing agents from the following			
	equations: i) $H_2C_2O_4 + MnO_{4(aq.)}^- \rightarrow CO_{2(g)} + Mn^{2+}$ ii) $Sn^{2+}_{(aq.)} + IO_{4(aq.)}^- \rightarrow Sn^{4+}_{(aq.)} + I_{(aq.)}^-$ iii) $H_2O_{2(aq.)} + Cr_2O_7^{-2}_{(aq.)} \rightarrow Cr^{3+}_{(aq.)} + O_{2(g)}$			
	$(aq.)$ (aq.) + Cr3O ₇ ⁻² (aq.) \rightarrow Cr ³⁺ (aq.) + O ₂ (q)			
	iv)FeCl _{2(aq.)} + 2KOH _(aq.) \rightarrow Fe(OH) _{2(aq.)} + 2KCl _(aq.)			
Ans.	i) (11) (11)			
	$H_2C_2O_4 + Mn O_{4(aq.)}^- \rightarrow C O_{2(g)} + Mn^{2+}$			
	$\downarrow \downarrow $			
- K	+1 +3 -2 +7 -2 +4 -2 +2			
	Coinlof clootrono			
	Gain ^l of electrons			
	Increase in oxidation number of carbon occurs by loss of 2 electrons. Hence $H_2C_2O_4$			
	behaves as reducing agent.			
	Decrease in oxidation number of Mn occurs by gain of 5 electrons. Hence it acts as			

oxidising agent.ii) Sn
$$^{2+}(aq_1) + 1 O^{-}_{4(aq_1)} \rightarrow Sn ^{4+}(aq_1) + 1^{-}_{(aq_1)}$$
 \downarrow \downarrow

	Therefore, $x + 2(-1) = 0$
	X = 2
	Therefore, oxidation state of Ba is +2
	d) Let the oxidation number of nitrogen be x
	x + 4(1) = +1
	x + 4 = 1, x = -3
	Therefore, oxidation state of nitrogen '- 3'
	e) Let the oxidation state of Fe be x
	oxidation state of CN ⁻ is '- 1'
	therefore, $3(1) + x + 6(-1) = 0$
	3 + x - 6 = 0, $x = 3$
	Therefore, oxidation state of Fe is +3
Q.8	Balance the following equations by ion-electron method.
	i) $SO_{2(g)} + Fe^{3+}_{(aq.)} \rightarrow Fe_{(aq.)}^{2+} + SO_{4(aq.)}^{2+}$ (acidic)
	ii) $CIO_{(aq.)}^{-} + Cr(OH)_{3(aq.)} \rightarrow CrO_{4(aq.)}^{2} + Cl_{(aq.)}^{-}$ (basic)
	iii) $H_2C_2O_{4(aq.)} + MnO_4^{-}_{(aq.)} \rightarrow CO_{2(g)} + Mn^{2+}_{(aq.)}$
Ans.	Step I Assign oxidation number to each element
	$SO_{2(g)}$ + Fe $^{3+}(aq.) \rightarrow$ Fe $(aq.)^{2+}$ + SO $_{4(aq.)}^{2-}$
	+4 -2 +3 +2 +6 -2
	Step II Divide the equation into two half equations, an oxidation half and reduction
	half
	$SO_{2(g)} \rightarrow SO_{4(aq.)}^{2}$ oxidation
	$SO_{2(g)} \rightarrow SO_{4(aq.)}^{2^{4}}$ oxidation Fe ${}^{3+}_{(aq.)} \not\rightarrow Fe_{(aq.)}^{2^{4}}$ reduction
	Step III Balance the half equation for O atoms adding H ₂ O to the side with less O
	atoms
	$SO_{2(g)} + 2H_2O_{(I)} \rightarrow SO_{4(aq.)}^{2-}$ oxidation Fe ³⁺ _(aq.) \rightarrow Fe _(aq.) ²⁺ reduction
	Fe ${}^{3+}_{(aq.)} \rightarrow$ Fe ${}^{(aq.)}^{2+}$ reduction
	Step IV Balance the H atoms by adding H^+ ions to the side having less H atoms
	$SO_{2(g)} + 2H_2O_{(I)} \rightarrow SO_{4(aq.)}^{2-} + 4H^+$ oxidation
	$Fe^{3+}_{(aq.)} \rightarrow Fe_{(aq.)}^{2+}$ reduction
	Stép V Add appropriate number of electrons for oxidation reaction, add electrons on
	R.H.S. while for reduction, add electrons on L.H.S.
	$SO_{2(g)} + 2H_2O_{(I)} \rightarrow SO_{4(aq.)}^{2-} + 4H^+ + 2e^-$ oxidation
	$Fe_{(aq.)}^{3+} + e \rightarrow Fe_{(aq.)}^{2+}$ reduction
	Step VI Balance the electron by multiplying with a suitable factor.
	$SO_{2(g)} + 2H_2O_{(I)} \rightarrow SO_{4(aq.)}^{2^-} + 4H^+ + 2e^- + 6e^-$ oxidation

 $2Fe^{3+}_{(aq.)} + 2e^{-} \rightarrow 2Fe_{(aq.)}^{2+}$ reduction Step VII Add both the equations $SO_{2(q)} + 2H_2O_{(l)} + 2Fe^{3+}_{(aq.)} \rightarrow SO_{4(aq.)}^{2-} + 4H^+ + 2Fe_{(aq.)}^{2+}$ ii) Step I) Assign oxidation number to each element $CIO^{-}_{(aq.)}$ + $Cr(OH)_{3(aq.)} \rightarrow CrO_{4(aq.)}^{2^{-}}$ + $CI^{-}_{(aq.)}$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ +3 -2 +1 +6 -2 +1 -2 -1 Step II Divide the equation into two half equations, an oxidation half and reduction half $Cr(OH)_{3(aq.)} \rightarrow CrO_{4(aq.)}^{2-}$ oxidation $CIO^{-}_{(aq.)} \rightarrow CIO^{-}_{(aq.)}$ reduction Step III Balance the half equation for O atoms adding H₂O to the side with less O atoms $Cr(OH)_{3(aq.)} + H_2O_{(I)} \rightarrow CrO_{4(aq.)}^{2-}$ oxidation $CIO^{-}_{(aq.)} \rightarrow CI^{-}_{(aq.)} + H_2O$ reduction **Step IV** Balance the H atoms by adding H⁺ ions to the side having less H atoms $Cr(OH)_{3(aq.)}$ + $H_2O_{(I)} \rightarrow CrO_{4(aq.)}^{2-}$ + 5H⁺ oxidation $\text{CIO}^{-}_{(\text{aq.})} + 2\text{H}^{+} \rightarrow \text{CI}^{-}_{(\text{aq.})} + \text{H}_{2}\text{O}^{+}$ reduction Step V Add appropriate number of electrons for oxidation reaction, add electrons on R.H.S. while for reduction, add electrons on L.H.S. $Cr(OH)_{3(aq,)} + H_2O_{(1)} \rightarrow CrO_{4(aq,)}^{2-} + 5H^+ + 3e^-$ oxidation $CIO^{-}_{(aq.)+}2H^{+}+2e^{-}\rightarrow CI^{-}_{(aq.)}+H_{2}O$ reduction **Step VI** Balance the electron by multiplying with a suitable factor. $2Cr(OH)_{3(aq.)} + 2H_2O_{(I)} \rightarrow 2CrO_{4(aq.)}^{2-} + 10H^+ + 3e^- oxidation$ $3CIO^{-}_{(aq.)} + 6H^{+} + 6e^{-} \rightarrow 3CI^{-}_{(aq.)} + 3H_2O$ reduction Step VII Add both the equations $2Cr(OH)_{3(aq.)} + 3CIO^{-}_{(aq.)} + 6H^{+} \rightarrow 2CrO_{4(aq.)}^{2-} + 3CI^{-}_{(aq.)} + 6H_2O$ **Step VIII** As the medium is basic add OH^{-} ions equal to the number of H^{+} on both sides $2Cr(OH)_{3(aq.)} + 3CIO^{-}_{(aq.)} + 6H^{+} + 6OH^{-}_{(aq.)} \rightarrow 2CrO_{4(aq.)}^{2-} + 3CI^{-}_{(aq.)} + 6H_{2}O + 6OH^{-}_{2}O + 6OH^{-}_{2$

iii) Step I Write the oxidation number of each element $H_2C_2O_{4(aq.)} + MnO_4^{-}_{(aq.)} \rightarrow CO_{2(g)} + Mn^{2+}_{(aq.)}$ $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow$ 1 1 +1 +3 -2 +7 -2 -4 -2 +2 Step II Divide the equation into two half equations, an oxidation half and reduction half and balance the carbon atom in the initial stage $H_2C_2O_{4(aq.)} \rightarrow 2CO_{2(q)}$ oxidation MnO_4 $^ _{(aq.)} \rightarrow Mn^{2+}$ $_{(aq.)}$ reduction Step III Balance the half equation for O atoms adding H₂O to the side with less O atoms $H_2C_2O_{4(aq.)} \rightarrow 2CO_{2(q)}$ oxidation $MnO_4 \xrightarrow[(aq.)]{} \rightarrow Mn^{2+} \xrightarrow[(aq.)]{} + 4H_2O_{(I)}$ reduction Step IV Balance the H atoms by adding H⁺ ions to the side having less H atoms $H_2C_2O_{4(aq.)} \rightarrow 2CO_{2(q)} + 2H^+$ oxidation ($MnO_4^{-}(aq.) + 8H^+ \rightarrow Mn^{2+}(aq.) + 4H_2O_0$ reduction Step V Add appropriate number of electrons for oxidation reaction, add electrons on while for reduction, add electrons on L.H.S. R.H.S. $MnO_4 \ ^- \ _{(aq.)} + 8H^+ + 5e^- \rightarrow Mn^{2+} \ _{(aq.)} + 4H_2O_{(I)} \ reduction$ Step VI Balance the number of electrons by multiplying the equations with appropriate suitable factor. $5H_2C_2O_{4(aq.)} \rightarrow 10CO_{2(g)} + 10H^+ + 10e^- \text{ oxidation}$ $2MnO_4^{-}_{(aq.)} + 16H^+ + 10e^- \rightarrow 2Mn^{2+}_{(aq.)} + 8H_2O_{(I)}$ reduction Step VII Add both the equations $5H_2C_2O_{4(aq.)} + 2MnO_4^{-}(aq.) + 16H^+ \rightarrow 10CO_{2(q)} + 10H^+ + 2Mn^{2+}(aq.) + 8H_2O_{(1)}$ ie. $5H_2C_2O_{4(aq.)} + 2MnO_4^{-}(aq.) + 6H^+ \rightarrow 10CO_{2(q)} + 2Mn^{2+}(aq.) + 8H_2O_{(1)}$