SEMESTER-I

	F.Y (VOCATIONAL SKILL COURSE (VSC))						
Title of the Course and Course Code : VGVUSVS103		CALCULUS -I	No. of Credits: 02				
Unit No.	Content		No. of Lectures				
I	Real Number System						
	Real number system R and order properties of R , Absolute value and						
	its properties, AM-GM inequality, Cauchy Schwarz inequality,						
	Intervals and neighbourhoods, Hausdroff property, Bounded sets,						
	supremum, infimum and their properties, statement of L.U.B. axiom,						
	Archimedean property and its applications, Density of rationals in R,						
II	Existence of nth root of positive real numbers. Sequences 10 I						
	Definition of a sequence and examples, convergence and divergence of						
	sequences, Boundedness of convergent sequence, Uniqueness of limit						
	of a convergent sequence, Algebra of convergent sequences, Sandwich						
	theorem, Monotone sequences, monotone convergence theorems and						
	consequences. Subsequence, Cauchy sequence and examples. Every						
	convergent sequence is a Cauchy sequence. Boundedness of a Cauchy						
	sequence. Cauchy Completeness property.						
III	Limits and Continuity 10						
	1	of some standard functions	such as				
	$ x , e^x$, sinx, cosx, tanx, lnx, $\frac{1}{x}$ over suitable intervals of R. limit of a						
	function, $(\varepsilon - \delta)$ definition of limit of a function, Evaluation of limit of						
	simple functions using $(\epsilon - \delta)$ definition, uniqueness of limit when it						
	exists, Algebra of limits, Sandwich theorem for limits, one sided limit,						
		e of limits, limit at infinity and infinite limit					
	Continuous functions: Continuity of a real valued function on a set in						
	terms of limits, examples, Continuity of a real valued function at end points of domain, Sequential continuity, Algebra of continuous						
	functions, discontinuous functions, examples of removable and essential discontinuity.						
		- y -					

Learning Objectives:

- 1) Understand the relationships between natural numbers, integers, rational numbers, and irrational numbers as subsets of the real numbers.
- 2) Understand the domain and range of a sequence.
- 3) Classify a sequence as finite or infinite.
- 4) To understand the behavior of a function as its independent variable approaches a specific value.

Learning Outcomes:

After learning this course, the learner will be able to

- 1) Understand many properties of the real line \mathbb{R} and learn to define sequence in terms of functions from \mathbb{R} to a subset of \mathbb{R} ..
- 2) Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit of a bounded sequence.
- 3) Calculate the limit and examine the continuity of a function at a point.
- 4) Sketch curves in Cartesian and polar coordinate systems.

Recommended Books:

- 1) Calculus ,Vipul Prakashan,Latika Bonde, Nithya Sai Narayana.
- 2) Calculus, Sheth Publication, Dr. Neena A. Joshi, Dr. Anil S. Vaidya.

Reference Books:

- 1. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, third edition, John Wiley & Sons, Inc.
- 2. R. R. Goldberg, Methods of real analysis, Indian Edition, Oxford and IBH publishing, New Delhi.
- 3. Tom M. Apostol, Calculus Vol.1, Second edition, John Wiley & Sons.
- 4. Ajit Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press.

SEMESTER-I

Vocational Skill Course (VSC)					
Title of the course and	CALCULUS-I	No.of			
course code : VGVUSVSP103	(PRACTICAL)	credits:02			
Practical /lab work to be performed in computer lab.					
List of practicals to be done using SageMath/Scilab/Maxima/Python.					
1) Order properties, absolute value					
2)AM-GM inequality					
3) Hausdorff property.					
4) Bounded sets					
5) Supremum and Infimum					
6) Archimedian property					
7) Convergent sequences .					
8) Divergent sequences .					
9) Sandwich theorem.					
10) Monotone sequences					
11) Cauchy sequences					
12) Subsequences					
13) Drawing graphs of functions.					
14) Limits and Continuity of function	ons.	_			
15) Non-existence of limits .					