

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for TYBSc

(June 2023 Onwards)

Program: B.Sc.

Semester V

Course Title: BOTANY

Course Code	Paper Title	Credit
SBO501	PLANT DIVERSITY V	2.5
SBO502	PLANT DIVERSITY VI	2.5
SBOP501	PRACTICALS (501 & 502)	3.0
SBO503	FORM AND FUNCTIONS V	2.5
SBO504	CURRENT TRENDS IN PLANT SCIENCES III	2.5
SBOP502	PRACTICALS (503 & 504)	3.0

1. Syllabus as per Choice Based Credit System i) Name of the Programme	:	B. Sc (BOTANY)
ii) Course Code	:	SBO501
iii) Course Title	:	PLANT DIVERSITY V
iv) Semester wise Course Contents	:	Copy of the syllabus Enclosed
v) References and additional references	:	Enclosed in the Syllabus
vi) Credit structure	:	
No. of Credits per Semester	:	2.5 + 1.5 = 04
vii) No. of lectures per Unit	:	15
viii) No. of lectures per week	:	04
ix) No. of Practicals per week	:	01 (per batch of 25 students)
2.Scheme of marking		60 Marks External assessment 40 Marks Internal Assessment
3.Special notes, if any		No
4.Eligibility, if any		As laid down in the College Admission brochure / website
5.Fee structure		As per College Fee Structure specifications
6.Special Ordinance/Resolutions, if any		No

Programme: T.Y.B.Sc Course : PLANT DIVERSITY V

Semester: V Course Code : SBO501

Teaching Scheme (Hrs/Week)		Cont	Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total			
L	Т	Р	С	CIA- 1	CIA- 2	CIA- 3	CIA -4	Lab	Written	
4	-	1	2.5	15	15	10		-	60	100
Max	Max, Time, End Semester Exam (Theory) -2Hrs.									

Course Objectives

2. To understand the phylogeny of nonvascular plants and study of their classification.

3. To explore the morphological, anatomical, embryological details as well as the economic importance of viruses, bacteria, algae and fungi.

		Course (SBO501)					
Unit No.	Module No.	Content					
1	110.	 Microbiology Types of Microbes: Characteristics of Viruses, Bacteria, Algae, Fungi, Protozoa, Mycoplasma and Actinomycetes. Culturing: Types of Sterilization, media, staining, Colony characters, Types of Pure cultures 	15				
		Types of Ture cultures					

2	 Algae (G.M. Smith Classification System to be followed) Division Rhodophyta: Classification, General Characters and Economic Importance Structure, life cycle and systematic position of <i>Batrachospermum</i>. Division Chrysophyta: Classification and General Characters and Economic Importance. Structure, life cycle and systematic position of <i>Pinnularia</i>. 	15
3	 Fungi (G.M. Smith Classification System to be followed) Basidiomycetes: Classification, General characters and Economic Importance Life cycle of Agaricus Deuteromycetes: Classification, General Characters and Economic Importance Life cycle of Alternaria 	15
4	 Plant Pathology Study of plant diseases: Causative organism, symptoms, predisposing factors, disease cycle and control measures of the following: White Rust -<i>Albugo candida</i> Wheat rust - <i>Puccinia</i> Tikka disease of ground nut: <i>Cercospora</i> Little Leaf of brinjal - <i>Mycoplasma</i> Citrus canker -<i>Xanthomonas axonopodis</i> pv. <i>citri</i> Leaf curl – leaf curl virus in Papaya. 	15
	Total No. of Lectures	60

1. Syllabus as per Choice Based Credit System

i) Name of the Programme	:	B. Sc (BOTANY)
ii) Course Code	:	SBO502
iii) Course Title	:	PLANT DIVERSITY-VI
iv) Semester wise Course Contents	:	Copy of the syllabus Enclosed
v) References and additional references	:	Enclosed in the Syllabus
vi) Credit structure	:	
No. of Credits per Semester	:	2.5 + 1.5 = 04
vii) No. of lectures per Unit	:	15
viii) No. of lectures per week	:	04
ix) No. of Practicals per week	:	02 (per batch of 25 students)
2.Scheme of marking		60 Marks External assessment 40 MarksInternal Assessment
3.Special notes, if any		No
4.Eligibility, if any		As laid down in the College Admission brochure / website
5.Fee structure		As per College Fee Structure specifications
6. Soecial Ordinance/Resolutions, if any		No

Programme: T.Y.B.Sc Course PLANT DIVERSITY – VI

Semester: V Course Code : SBO502

(]	Teaching Scheme (Hrs/Week)		Cont	Continuous Internal Assessment (CIA) 40 marks			End Semester Examination	Total		
L	Т	P	С	CIA- 1	CIA- 2	CIA- 3	CIA -4	Lab	Written	
4	-	1	2.5	15	15	10		-	60	100
Max	Max. Time, End Semester Exam (Theory) -2Hrs.									

Co	ourse Objectives
	1. To recognize and identify major groups of vascular plants.
	2. To understand the phylogeny of vascular plants and study of their classification.
	3. To understand the phylogeny of vascular plants and study of their classification.

		Course (SBO502)				
Unit No.	Modul e No.	lul o. Content				
1		 Paleobotany Lepidodendron- All form genera root, stem, bark, leaf, male and female fructification. Lyginopteris- All form genera root, stem, leaf, male and female fructification. Pentoxylon- All form genera. Contribution of Birbal Sahni, Birbal Sahni Institute of Paleobotany, Lucknow 	15			
2		 Angiosperms I Complete classification of Bentham and Hooker (only for prescribed families), Merits and demerits Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic and medicinal importance for members of the families. (Special stress on fruit morphology to be given) 	15			

	Total No. of Lectures	60
	 Application of Palynology in honey industry, coal and oil exploration, forensic science 	
4	• Germination and growth of pollen	
	• Pollen viability-storage	
	Pollen Morphology	15
	Palynology	
	Paracytic, and Graminaceous	
	• Types of Stomata– Anomocytic, Anisocytic, Diacytic,	
	• Root stem transition: Definition and types	
3	Radish	15
	Anomalous secondary growth in Stems of Bignonia, Salvadora Achyranthes Dracagna Storage roots of Beet	
	• Anomalous secondary growth: Definition, types,	
	Anatomy I	
	7. Commennaceae	
	7. Commelinaceae	
	5. Rubiaceae	
	4. Umbelliferae	
	3. Mimusoideae	
	2. Cucurbitaceae	
	1. Capparidaceae	

SBO	501 PRACTICAL –I AND II	
PRAC	FICAL-I PLANT DIVERSITY V Cro	edits 1.5
Sr. No.	Description	
1	Microbiology	
	• Study of aeromicrobiota by petriplate exposed method: Fungal culture, Bacterial	
	culture.	
	• Determination of Minimum Inhibitory Concentration (MIC) of sucrose against sele	ected
	Study of antimicrohial activity by the diag diffusion mathed	
2	• Study of antimicrobial activity by the disc diffusion method.	
4.	Aigae (G.M. Siniti Classification System to be followed)	
	Buruchospermum Pinnularia	
3	Fungi (G.M. Smith Classification System to be followed)	
	Study of stages in the life cycle of the following Fungi from fresh / preserved materia	al and
	permanent slides	ui uiiu
	• Agaricus	
	• Alternaria	
4.	Plant Pathology	
	Study of the following fungal diseases:	
	• White rust in Cruciferae (Brassicaceae)	
	• Wheat rust - <i>Puccinia</i>	
	Tikka disease in Groundnut	
	• Little leaf of brinjal	
	• Citrus canker	
	Leaf curl in Papaya Leaf	

SBOP	501 PRACTICAL –I AND II	
PRAC	CTICAL-II PLANT DIVERSITY VI Credits	s 1.5
Sr.	Description	
No.		
1	Paleobotany	
	Study of the following form genera with the help of permanent slides/ photomicrograph	s.
	Lepidodendron	
	• Lyginopteris	
	• Pentoxylon	
2	Angiosperms I	
	• Study of one plant from each of the following Angiosperm families as per Bentham ar	nd
	Hooker's system of classification.	
	• Capparidaceae	
	• Cucurbitaceae	
	• Mimusoideae	
	• Umbelliferae (Apiaceae)	
	• Rubiaceae	
	• Scrophulariaceae	
	• Commelinaceae	
	• Morphological peculiarities and economic importance of the members of the above-	
	mentioned Anglosperm families	
2	• Identifying the genus and species of a plant with the help of Flora	
<i>L</i>	• Study of anomalous secondary growth in the stars of the following plants using doub	10
	• Study of anomalous secondary growth in the sterns of the following plants using doub	IC
	1) Bignonia 2) Salvadora 3) Achyranthes 4) Dracaena	
	• Study of anomalous secondary growth in the roots of 1 Beet 2 Radish	
	• Types of Stomata	
	1) Anomocytic 2) Anisocytic 3) Diacytic 4) Paracytic 5) Graminaceous	
3	Palynology I	
	• Study of pollen morphology (NPC Analysis) of the following by Chitale's Method	
	1) Hibiscus	
	2) Datura	
	3) Ocimum	
	4) Crinum	
	5) Pancratium	
	6) Canna	
	Determination of pollen viability	
	• Pollen analysis from honey sample – unifloral and multifloral honey	
	• Effect of varying concentration of sucrose on In vitro Pollen germination	

1. Syllabus as per Choice Based Credit System

i) Name of the Programme	: B. Sc (BOTANY)
ii) Course Code	: SBO503
iii) Course Title	: FORM AND FUNCTIONS - V
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 2.5 + 1.5 = 04
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 04
ix) No. of Practicals per week	: 01 (per batch of 25 students)
2.Scheme of marking	60 Marks External assessment 40 Marks Internal Assessment
3.Special notes, if any	No
4.Eligibility, if any	As laid down in the College Admission brochure / website
5.Fee structure	As per College Fee Structure specifications
6.Soecial Ordinance/Resolutions, if any	No

Programme: T.Y.B.Sc Course FORM AND FUNCTIONS V Semester: V Course Code : SBO503

Teaching Scheme (Hrs/Week)			ng ie eek)	Cont	Continuous Internal Assessment (CIA) 40 marks				End Semester Examination	Total
L	Т	Р	С	CIA- 1	CIA- 2	CIA- 3	CIA -4	Lab	Written	
4	-	1	2.5	20	15	05		-	60	100
Max, Time, End Semester Exam (Theory) -2Hrs.										

 Course Objectives

 1.To acquire knowledge about two important organelles and molecular mechanisms of translation

 2.To understand water relations of plants, inorganic and organic solute transport, and apply the knowledge to manage mineral nutrition and survival in challenging abiotic stresses

 3.To understand succession in plant communities and study remediation technologies in order to apply knowledge acquired for cleanup of polluted sites.

 4.To get exposure to principles and techniques of plant tissue culture and apply these studies for improving agriculture and horticulture and to become an entrepreneur.

	Course (SBO503)				
Unit	Modul	Content	Lecture		
No.	b. e No.				
		Cytology and Molecular Biology			
		• Structure and function and types of chromosome, giant			
		chromosomes			
1		Protein Synthesis:			
		Central dogma of Protein synthesis	15		
		Transcription in prokaryotes and eukaryotes: promoter sites, initiation, elongation and termination.			
		RNA processing: Adenylation & Capping			
		Plant Physiology I			
2		• Water relations: Concept of water potential and factors	15		
		affecting water potential, osmosis, transpiration, imbibition			

	(root pressure and guttation)	
	• Translocation of solutes: Composition of phloem sap, girdling experiment.	
	• Pressure flow model (Munch's hypothesis): Phloem loading and unloading, anatomy of sieve tube elements and mechanisms of sieve tube translocation.	
	• Mineral Nutrition: Role of Macro and Micro nutrients,	
	physiological functions and deficiency symptoms.	
	Environmental Botany	
	• Bioremediation: Principles, factors responsible and	
	microbial population in bioremediation.	15
3	• Phytoremediation : Types (Phytoextraction, Knizonitration, Phytostabilization, Phytodegradation, Phytovolatilization)	15
	 Plant succession: Hydrosere and Xerosere – Formation of Barren Space, Succession on the Land Citing Different Seres leading up to the Climax, Succession in Water. 	
	Plant Tissue Culture	
	 Aspects of Micro-propagation with reference to Banana 	15
	cultivation	
4	 Somatic Embryogenesis and Artificial Seeds. 	
-	 Protoplast Fusion and Somatic Hybridization: 	
	• i) Concept, Definition and various methods of Protoplast	
	Fusion ii) Applications of Somatic Hybridization in Agriculture	
	Total No. of Lectures	60

1. Syllabus as per Choice Based Credit System

i) Name of the Programme	: B.Sc (BOTANY)
ii) Course Code	: SBO504
iii) Course Title	CURRENT TRENDS IN PLANT : SCIENCES - III
iv) Semester wise Course Contents	: Copy of the syllabus Enclosed
v) References and additional references	: Enclosed in the Syllabus
vi) Credit structure	:
No. of Credits per Semester	: 2.5 + 1.5 = 04
vii) No. of lectures per Unit	: 15
viii) No. of lectures per week	: 04
ix) No. of Practicals per week	: 01 (per batch of 25 students)
2.Scheme of marking	60 Marks External assessment 40 Marks Internal Assessment
3.Special notes, if any	No
4.Eligibility, if any	As laid down in the College Admission brochure / website
5.Fee structure	As per College Fee Structure specifications
6.Soecial Ordinance/Resolutions, if any	No

Programme: T. Y. B. Sc Course : CURRENT TRENDS IN PLANT SCIENCES – III

Semester: V Course Code : SBO504

Teaching Scheme (Hrs/Week)		Cont	inuous I (CIA	nternal A) 40 mar	Assessn ·ks	End Semester Examination	Total			
L	Т	Р	С	CIA- 1	CIA- 2	CIA- 3	CIA -4	Lab	Written	
4	-	1	2.5	20	15	05		-	60	100
M	Max, Time, End Semester Exam (Theory) -2Hrs.									

 Course Objectives

 1.To learn ethnobotanical principles, applications and utilize indigenous plant knowledge for the cure of common human diseases and improvement of agriculture.

 2.To get exposure to the technique of mushroom cultivation and explore the possibility of entrepreneurship in the same.

 3.To gain knowledge about the latest molecular biology techniques for isolation and Characterization of genes.

 4.To learn principles and application of commonly used techniques in instrumentation

 5.To gain proficiency in the monograph study and pharmacognostic analysis of six medicinal plants.

		Course (SBO504)				
Unit	Modul	Content				
No.	e No.	Content	S			
		Ethnobotany and Mushroom Industry				
		• Ethnobotany- Definition, history, sources of data and				
		methods of study,				
		• Contribution of S.K.Jain in the field of Ethnobotany				
1		 Applications of ethnobotany: 				
		1. Ethno-medicines.				
		2. Agriculture.	15			
		3. Edible plants.				
		• Traditional medicines used by tribals in Maharashtra towards				
		1. Skin ailments: Rubia cordfolia, Sandalwood				
		2. Liver ailments: Phyllanthus, Andrographis				

	<i>3.</i> Wound healing and ageing: <i>Centella, Terminalia.</i>	
	4. Fever: Tinospora cordifolia	
	5. Diabetes: <i>Momordica charantia</i> , Syzygium cuminii	
	• Mushroom industry:	
	1. Detail general account of production of mushrooms with	
	harvesting of mushroom Cultivation of Agaricus	
	mushroom	
	2. General account of mushrooms: Nutritional value, picking	
	and packaging, economic importance	
	Plant Biotechnology I	
	Construction of genomic DNA libraries, Chromosome	
•	libraries and c- DNA libraries.	
2	• Identification of specific cloned sequences in c-DNA	15
	libraries and Genomic libraries	
	• Analysis of cloned DNA sequences: Hybridization (Southern Hybridization)	
	Instrumentation	
	Colorimetry and Spectrophotometry (Visible and UV) –	
	Instrumentation, working, principle and applications.	
3		15
C	Chromatography: General account of Column chromatography.	
	Principle and bedding material involved in adsorption and partition	
	chromatography	
	Pharmacognosy and Medicinal Botany	
	• Monographs of drugs with reference to biological	15
	sources, geographical distribution, common varieties, macro	
	and microscopic characters, chemical constituents,	
4	therapeutic uses, adulterants- <i>Strychnos</i> seeds, <i>Senna</i> leaves,	
	Clove buds, Allium sativum, Acorus calamus and Curcuma	
	Total No. of Lectures	60

SBOR	2502 PRACTICAL –III AND IV				
PRAC	TICAL-III FORM AND FUNCTIONS - V Credits 1.5				
Sr.	Description				
NO. 1	Cytology and Malagular Pielogy				
T	Lytology and Molecular Blology				
	1. Mounting of Grant chromosomes from <i>Chromomous</i> raiva				
	2. Smear preparation from <i>Tradescantia</i> buds				
	5. Predicting the sequence of amino acids in the polypeptide chain that will be formed following translation (Eukernatio)				
2	Plant Physiology I				
4	1 Estimation of Phosphate phosphorus (Plant acid extract)				
	2. Estimation of Iron (Plant acid avtract)				
	2. Estimation of a standard graph and determination of the multiplication factor for				
	Phosphete / Iron estimation using a given standard phosphete / Standard Iron solution should				
	be done in regular practical as this will also be put as a question in practical exam)				
3	Environmental Botany				
	Estimation of the following in given water sample				
	1. Dissolved oxygen demand				
	2. Biological oxygen demand				
	3. Hardness				
	4. Salinity and Chlorinity				
4	Micropropogation				
	Plant Tissue culture:				
	1. Identification – Multiple shoot culture, hairy root culture, somatic embryogenesis				
	2. Preparation of stock solutions for preparation of MS medium				
	(Note: Concept of preparation of specified molar solutions should be taught and problems				
	based on preparation of stock solutions for tissue culture media will be given).				

SBOI	P502 PRACTICAL –III AND IV
PRAC	TICAL-IV CURRENT TRENDS IN PLANT SCIENCES III Credits 1.5
Sr.	Description
NO.	Ethnobotony and muchanom inductory
1	Luniopotany and mushroom mustry
	1. Study of plants mentioned in theory for Ethnobolany
	2. Mushroom cultivation (To be demonstrated)
	stage, mature/ harvest stage of <i>Agaricus</i>
2	Biotechnology I
	1. Growth curve of <i>E. coli</i>
	2. Plasmid DNA isolation and Separation of DNA using AGE
	3. Southern blotting
3.	Instrumentation
	1. Demonstration of Beer Lambert's Law
	2. Experiment based on Ion exchange chromatography for demonstration
	3. Experiments based on separation of dyes/plant pigments using gel column
	chromatography.
4.	Pharmacognosy
	Macroscopic/ Microscopic characters and Chemical tests for active constituents of
	the following plants.
	1. Allium sativum
	2. Acorus calamus
	3. Curcuma longa
	4. Senna angustifolia
	5. Strychnos nux-vomica
	6. Eugenia caryophyllata

Syllab	us Prepared by:
1.	Prof. (Dr.) Ajit Kengar: Member, Syllabus Committee
	Head, Dept. of Botany, Department of Botany
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.
2.	Dr. Supriya Thale: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.
3.	Mr. Jatin Vaity: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V. G. Vaze College (Autonomous), Mulund (East), Mumbai.
4.	Dr. Rajani Shirsat: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V. G. Vaze College (Autonomous), Mulund (East), Mumbai.
5.	Ms. Siddhi Baskaware: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V. G. Vaze College (Autonomous), Mulund (East), Mumbai.
6.	Ms. Nupoor Telawane: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V. G. Vaze College (Autonomous), Mulund (East), Mumbai.
7.	Dr.Jayshri Jagtap: Member, Syllabus Committee
	Assistant Professor, Department of Botany
	KET's V. G. Vaze College (Autonomous), Mulund (East), Mumbai.