

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India

College with Potential for Excellence

Phones: 022-21631421, 221631423, 221631004 Fax: 022-221634262,
email: vazecollege@gmail.com

Syllabus for B. Sc. Second Year Programme Mathematics

Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

Board of Studies in Mathematics

V.G Vaze College of Arts, Science and Commerce (Autonomous)

Submitted by

Department of Mathematics Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous)

Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India.

Tel: 022-21631004, Fax: 022-21634262

E-mail: <u>vazecollege@gmail.com</u>Website:<u>www.vazecollege.net</u>

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce
(Autonomous)

❖ Syllabus as per Choice Based Credit System (NEP 2020)

Syllabus for Approval

Subject: Mathematics

Sr. No.	Heading	Particulars
1	Title of Programme	Second Year B. Sc. Mathematics: Semester III and IV
2	Eligibility for Admission	The First Year B.Sc. examination of this university with Mathematics as a Major or Minor subject or any other university recognized as equivalent thereto.
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/Two semester
6	Level	U.G. Part-I : Level - 5.0
7	Pattern	Semester
8	Status	Revised
9	To be implemented from Academic year	2025-2026

Date:	Signature:
ROS Chairnerson:	

Second Year B. Sc. Program in Mathematics (Level 5.0)

Semester	Core Course & Credits		NSQF Course & Cred	lits
	MAJOR	No. of	VSC/SEC	No. of
Sem -		Lectures		Lectures
	Mandatory* Credits 08 (4 x 2)		VSC Credits 2	
III	Course 1 Cr. 2: Multivariable Calculus	2L	Course 1 Cr. 2: RDBMS &	4L
	I		MYSQL	
	Course 2 Cr. 2: Laplace Transform	2L		
	Course 3 Cr. 2: Ordinary Differential	2L		
	Equations			
	Course 4 Cr. 2: Practical	4L		
	(Practical Based on all Papers)			
	MINOR Credits 4 (2+2)		OJT/FP/CEP/CC/RP	
	Course 1 Cr. 2: Ordinary Differential	2L	FP Credits 2	
	Equations			
	Course 2 Cr. 2: Practical based on	4L	Course 1 Cr. 2: Practical	4L
	Ordinary Differential Equations			
	MAJOR		VSC/SEC	No. of
Sem -			YIGG G W	Lectures
IV	Mandatory* Credits 08 (4 x 2)		VSC Credits 2	
	Course 1 Cr. 2: Multivariable Calculus	2L	Course 1 Cr. 2:	4L
	II		Programming in C++	
	Course 2 Cr. 2: Fourier Transform	2L		
	Course 3 Cr. 2: Partial Differential	2L		
	Equation Course 4 Cr. 2: Practical	2L		
		ZL		
	(Practical Based on all Papers)		O TE/ED/CED/CC/DD	
	MINOR Credits 2		OJT/FP/CEP/CC/RP	
	Course 1 Cr. 2: : Partial Differential	2L	CEP Credits 2	
	Equation			
1			Course 1 Cr. 2: Practical	4L

Total Cumulative credits = 16 + 06 + 04 + 04 = 30 Credits

Exit option: Award of UG Diploma in Major and Minor with 80-88 credits OR continue with Major & Minor

B. Sc. Program in Mathematics: Cumulative Credit Structure

Level	Sem.	MAJOR Mandatory*	MINOR	VSC	FP/CEP	Cum. Credits	Degree
5.0	Sem-III	Credits 08 (2+2+2+2) Course 1 Cr. 2: Multivariable Calculus I Course 2 Cr. 2: Laplace Transform Course 3 Cr. 2: Ordinary Differential Equations Course 4 Cr. 2: Practical (based on all papers)	Credits 4 (2+2) Course 1: Cr. 2: Ordinary Differential Equations & Course 2: Cr. 2: Practical based on Ordinary Differential Equations	Credits 2 (RDBMS & MYSQL) Practical	Credits 2 FP Practical	16	UG Diploma
	Sem-IV	For Mathematics					
		Credits 10 (2+2+2+2) Course 1 Cr.2: Multivariable Calculus II Course 2 Cr.2: Fourier Transform Course 3 Cr.2: Partial Differential Equations Course 4 Cr. 2: Practical (based on all papers)	Credits 2 Course 1: Cr. 2: Partial Differential Equations	Credits 2 (Programming in C++) Practical	Credits 2 CEP Practical	14	
Total (Credits	16	06	04	04	30	

Programme Educational Objectives

PEO1	Mathematical Foundation – Develop strong problem-solving and analytical skills in core mathematical concepts.
PEO2	Real-World Application – Apply mathematical methods in science, engineering, and other fields.
PEO3	Critical Thinking – Enhance logical reasoning and problem-solving abilities.
PEO4	Technology Integration – Utilize modern mathematical software and computational tools.
PEO5	Communication & Teamwork – Effectively communicate mathematical ideas and collaborate in teams.
PEO6	Lifelong Learning – Engage in continuous learning and research in mathematics.
PEO7	Ethical Responsibility – Apply mathematics responsibly in professional and societal contexts.

Programme Outcomes

Upon successful completion of the B.Sc. (Mathematics) course from Vaze College affiliated to Mumbai University, graduates can expect the following outcomes:

PO1	Mathematical Knowledge – Demonstrate a strong understanding of fundamental mathematical concepts and theories.
PO2	Problem-Solving Skills – Apply mathematical techniques to solve real-world problems efficiently.
PO3	Logical and Analytical Thinking – Develop critical thinking, reasoning, and analytical abilities.
PO4	Computational Proficiency – Use mathematical software, programming, and computational tools effectively.
PO5	Data Analysis and Modeling – Interpret and analyze data using mathematical and statistical methods.
PO6	Effective Communication – Convey mathematical ideas clearly through written and verbal communication.
PO7	Interdisciplinary Approach – Apply mathematical knowledge across various fields like physics, economics, and computer science.

Programme Specific Outcomes

PSO1	Core Mathematical Proficiency – Demonstrate expertise in algebra, calculus, differential
	equations, and other fundamental areas of mathematics.
PSO2	Computational and Analytical Skills – Apply mathematical and computational techniques to
	solve theoretical and practical problems.
PSO3	Mathematical Modeling - Develop and analyze mathematical models for real-world
	applications in science, engineering, and economics.
PSO4	Data Interpretation and Statistics – Use statistical and probabilistic methods to analyze and
	interpret data effectively.
PSO5	Software and Programming Proficiency – Utilize mathematical software (such as MATLAB,
	Maxima, or Python) for problem-solving and research.
PSO6	Research and Higher Studies Readiness – Build a strong foundation for advanced studies
	and research in mathematics and related fields.

The Detailed Semester and Course Wise Syllabus as follows:

The total minimum credits required for completing the B.Sc. in Mathematics is 120-132

SEMESTER - III					
Code	Course of Study - Major	L	T	P	Cr.
VSMA200	Course 1 Cr. 2: Multivariable Calculus I	2	-	-	2
VSMA201	Course 2 Cr. 2: Laplace Transform	2	-	-	2
VSMA202	Course 3 Cr. 2: Ordinary Differential Equations	2	-	-	2
VSMA203	Course 4 Cr. 2: Practical Based on Course 1 to 3	-	-	2	2
	VSC Credits 2		-		
VSMA204	Course 1 Cr. 2: R DBMS & MYSQL	-	-	2	2
	MINOR Credits 4 (2+2)		-		
VSMA205	Course 1 Cr. 2: Ordinary Differential Equations	2	-	-	2
VSMA206	Course 2 Cr. 2: Practical based on Ordinary Differential	-	-	2	2
	Equations				
	FP Credits 2		-		
VSMA207	Course 1 Cr. 2: Practical	-	-	2	2
	Total	08	-	08	16

***** Note: Students are allowed to select one elective out of two electives given in curriculum

SEMESTER - I	V				
Code	Course of Study – Major	L	T	P	Cr.
VSMA250	Course 1 Cr. 2: Multivariable Calculus II	2	-	-	2
VSMA251	Course 2 Cr. 2: Fourier Transform	2	-	-	2
VSMA252	Course 3 Cr. 2: Partial Differential Equations	2	-	-	2
VSMA253	Course 4 Cr. 2: Practical Based on Course 1 to 3	-	-	2	2
	VSC Credits 2		-		
VSMA254	Course 1 Cr. 2: Programming in C++	-	-	2	2
	MINOR Credits 2		-		
VSMA255	Course 1 Cr. 2: Partial Differential Equations	2	-	-	2
VSMA256	CEP Credits 4		-		
	Course 1 Cr. 2: Practical	-	-	2	2
		08	-	06	14

***** Note: Students are allowed to select one elective out of two electives given in curriculum

Proposed Draft Syllabus for S. Y. B. Sc. Mathematics Semester III and IV $\,$

(Mathematics Specialization)

Choice Based Credit System (NEP 2020)

(To be implemented from the academic year, 2025-2026)

Semester – III

Paper I
Course Code: VSMA200
Credits: 2

MULTIVARIABLE CALCULUS -I

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	To understand the Euclidean Space \mathbb{R}^n and how it is different from \mathbb{R} .
2.	To differentiate between the scalar and vector fields and To learn the concept of sequence,
	continuity and differentiability.
3.	To understand the application of Differentiation of vector fields.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Learn conceptual variations while advancing from one variable to several variables in calculus
	& Understand the notion of Limits, continuity in \mathbb{R}^n
CO2	Find Differentiability of Scalar Field and Apply Chain rule for derivatives, Euler's Theorem.
CO3	Find Differentiability of Vector fields & Understand the Hessian matrix, Maxima, minima and
	saddle points.

Unit	Contents	No. of
		lectures
Unit I	Riemann Integration	10
	Approximation of area, upper and lower Riemann sums and their properties, upper	
	and lower integrals, definition of Riemann integral on a closed and bounded	
	interval, Riemann criterion for integrability, and its properties.	
Unit II	Definite & Indefinite Integrals and their Applications	10
	Continuity of $F(x) = \int_a^x f(t) dt$ where $f \in R[a, b]$	
	Fundamental theorem of calculus, Mean value theorem, Integration by parts,	
	Leibnitz rule, Improper integrals-type I and type II, Absolute convergence of	
	improper integrals, Comparison tests, Abel's and Dirichlet's tests.	
Unit III	Improper Integrals and Beta & Gamma Functions	10
	β and Γ functions and their properties, relationship between β and Γ	
	functions (without proof). Applications of definite Integrals: Area between curves,	
	finding volumes by slicing, volumes of solids of revolution-Disks and Washers,	
	Cylindrical Shells, Lengths of plane curves, Areas of surfaces of revolution.	

List of suggested Practicals:

- 1) Riemann Sums
- 2) Riemann Integrability
- 3) Fundamental Theorem of Calculus
- 4) Improper Integrals (Type I)
- 5) Volume of Solids (Disk Method)
- 6) Beta and Gamma Functions
- 7) miscellaneous

- 1. Calculus. Vol.2, T. Apostal, John Wiley
- 2. Calculus.J.Stewart, Brooke/cole Publishing Co.
- 3. Multivariable Calculus, Vipul Publication
- 4. Calculus of several variable by Serge Lang.

Paper II Course Code: VSMA201

Credits: 2

LAPLACE TRANSFORMS

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	The basic need of this course is to understand the concepts and applications of Laplace
	transforms.
2.	The concepts and methods are useful for solving Differential Equations.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Know about piecewise continuous functions, Dirac delta function, Laplace transform and			
	its properties and Know about Unit step, Periodic, Error, Gamma and Null functions.			
CO2	2 Understand Laplace and Inverse Laplace transforms, Know the basic properties of Laplace			
	and inverse Laplace transforms and Calculate the Laplace transform of basic functions			
	using the definition.			
CO3	Find the Laplace transform of derivatives of functions, Compute inverse Laplace transforms			
	and Solve ordinary differential equations using Laplace transforms.			

Unit	Contents	No. of
		lectures
Unit I	Laplace Transform and Their Basic Properties	10
	Basic concept & Definition of Integral Transform, Definition of the Laplace	
	transform, Kernel of Laplace Transform, Definition of Sectional or piecewise	
	continuity& Functions of exponential order, Sufficient conditions for existence of	
	Laplace transform, Laplace transforms of elementary functions.	
	Some important properties of Laplace transforms: Linearity property, first	
	translation or shifting property, second translation or shifting property, change of	
	scale property, Laplace transform of derivatives,	
	Laplace transform of integrals, Multiplication by t, Division by t	
Unit II	Inverse Laplace Transform	10
	Definition of inverse Laplace transform, Uniqueness of inverse Laplace	
	transform. Inverse Laplace transform of some functions. Some important	
	properties of inverse Laplace transforms. Linearity property, first translation or	
	shifting property, second translation or shifting property, change of scale property,	
	Inverse Laplace transform of derivatives, Inverse Laplace transform of integrals,	
	Multiplication by s^n , Division by s. Convolution Theorem, Partial	

	fraction Method.	
Unit III	Applications to Differential Equations Applications of Laplace transform to solve ordinary differential equations (ODEs) and partial differential equations (PDEs)	10

List of Practicals:

- 1) Laplace Transform of Elementary Functions
- 2) Properties of Laplace Transform
- 3) Inverse Laplace Transform and Its Properties
- 4) Solving ODEs Using Laplace Transforms
- 5) Inverse Laplace Transform Using Partial Fractions
- 6) Convolution Theorem and Its Application
- 7) Miscellaneous

- 1. Murray R. Spiegel, Schaum's Outline Series, Theory and Problems of Laplace Transforms, Mc Graw Hill Ltd, New York, 1965.
- 2. Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Second Edition, C. R. C. Press, London, 2007.
- 3. Phil Dyke, An Introduction to Laplace Transforms and Fourier Series, Second Edition, Springer-Verlag London, 2014.
- 4. Joel L. Schiff, The Laplace Transform: Theory and Applications (Undergraduate Texts in Mathematics), Springer.
- E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John & Wiley Sons,
 U.K., 2016

Paper III **Course Code: VSMA202**

Credits: 2

ORDINARY DIFFERENTIAL EQUATIONS

Course Learning Objectives

Upon completion of the course the student will be able to understand

- The main objectives of this course are to introduce the students to the exciting world of differential equations.
- System of differential equations and their applications. 2.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Understand the genesis of ordinary differential equations.
CO2	Learn various techniques of getting exact solutions of solvable first order differential
	equations and linear differential equations of higher order.
CO3	Grasp the concept of a general solution of a linear differential equation of an arbitrary
	order and also learn a few methods to obtain the general solution of such equations.

Unit	Contents	No. of
		lectures
Unit I	First Order First Degree Differential Equations	10
	Definitions of: Differential Equation, Order and Degree of a differential Equation, Ordinary Differential Equation (ODE), Linear ODE, non-linear ODE.	
	Existence and uniqueness Theorem for the solution of a second order initial value problem (statement only). Definition of Lipchitz function. Examples based on verifying the conditions of existence and uniqueness theorem.	
	Review of solution of homogeneous and non-homogeneous linear differential equations of first order and first degree. Exact Equations: General Solution of Exact equations of first order and first degree, Necessary and sufficient condition for $Mdx + Ndy = 0$ to be exact.	
	Non-exact equations: Rules for finding integrating factors (without proof) for non-exact equations such as:	
	i) $\frac{1}{Mx+Ny}$ is an I . F . if $Mx + Ny \neq 0$ and $Mx + Ny = 0$ is homogeneous.	
	ii) $\frac{1}{Mx-Ny}$ is an I . F . if $Mx - Ny \neq 0$ and $Mx + Ny = 0$ is of the form $f_1(x, y)ydx + f_2(x, y)xdy = 0$.	
	iii) $e^{\int f(x)dx}$ (resp $e^{\int f(y)dy}$) is an I . F . if $N \neq 0$ (resp $M \neq 0$ and $\frac{1}{N}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$ (resp $\frac{1}{\partial y}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$) is a function of x (resp y) alone, say	

	$f(x)(resp\ g(y))$. Linear and reducible linear equations of first order. Finding solutions of first order	
	differential equations, applications to orthogonal trajectories, population growth,	
	and finding the current at a given time	
Unit II	Second Order Linear Differential Equations	10
	Homogeneous and non-homogeneous second order linear differentiable equations: The space of solutions of the homogeneous equation as a vector space. Wronskian and linear independence of the solutions. The general solution of homogeneous differential equations. The general solution of a non homogeneous second order equation. Complementary functions and particular integrals. The homogeneous equation with constant coefficients, auxiliary equation. The general solution corresponding to real and distinct roots, real and equal roots and complex roots of the auxiliary equation. Non-homogeneous equations: The method of undetermined coefficients. The method of variation of parameter	
Unit III	Linear Differential Equations with constant coefficients	10
	Complementary function and particular integral. General solution of	
	f(D)y = X. Solution of $f(D)y = 0$, for non-repeated, repeated, real and complex	
	roots of $f(D)y = X$ where X is of the form e^{ax} ,	
	$sinax$, $cosax$, x^m , $e^{ax}V$, xV .	

List of suggested Practicals:

- 1. Solving First Order Exact Differential Equations.
- 2. Solving First Order Non-Exact Differential Equations and Finding Integrating Factors.
- 3. Applications of First Order Differential Equations: Orthogonal Trajectories and Population Growth.
- 4. Solving Second Order Linear Homogeneous Differential Equations with Constant Coefficients.
- 5. Solving Non-Homogeneous Second Order Differential Equations: Method of Undetermined Coefficients and Variation of Parameters.
- 6. Solving Linear Differential Equations with Constant Coefficients for Non-Repeated, Repeated, Real, and Complex Roots.
- 7. Miscellaneous.

- 1. William F Trench, Elementary Differential Equations with Boundary Value Problems, E book (Free download)
- 2. Frank Ayres JR, Theory and Problems on Differential Equations, Schaum's outline Series, SI (metric) edition.
- 3. M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand Pub. Ltd 2009.
- 4. Elementary Differential Equations seventh edition by Earl D. Rainville and Philip E Bedient.
- 5. George F. Simmons and Stevan G. Krantz, Differential Equations, Tata McGraw-Hill.
- 6. W. R. Derrick and S. I. Grossman, A First Course in Differential Equations with Applications CBS Publishers and Distributors, Delhi 110032, Third Edition.

Semester-III

Paper : VSC

Course Code: VSMA204

Credits: 2

(RDBMS & MYSQL)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Provide for mass storage of relevant data and Allow multiple users to be active at one time.
2.	Provide data integrity and Protect the data from physical harm and unauthorized access.
3.	Provide security with a user access privilege.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Describe the fundamental elements of relational database management systems.
CO2	Explain the basic concepts of relational data model, entity-relationship model, relational
	database design, relational algebra and SQL AND Design ER-models to represent simple
	database application scenarios.
CO3	Convert the ER-model to relational tables, populate relational database and formulate SQL
	queries on data.

Unit	Contents	No. of
		lectures
Unit-1	Relational Data Base Management System	10
	Introduction to Data base Concepts: Database, Overview of data base management	
	system. Data base Languages- Data Definition Languages (DDL) and Data	
	Manipulation Languages (DML).Entity Relation Model: Entity, attributes, keys,	
	relations, Designing ER diagram, integrity Constraints over relations, conversion of	
	ER to relations with and without constrains	
Unit-2	MySQL Basics	10
	Statements (Schema Statements, Data statements, Transaction statements), names	
	(table & column names), data types (Char, Varchar, Text, Medium text, Long text,	
	Smallint, Bigint, Boolean, Decimal, Float, Double, Date, Date Time, Timestamp,	
	Year, Time), Creating Database, inserting data, Updating data, Deleting data,	
	expressions, built-in-functions – lower, upper, reverse length, ltrim, rtrim, trim, left,	
	right, mid, concat, now, time, date, curdate, day, month, year, dayname, monthname,	
	abs, pow, mod, round, sqrt missing data(NULL and NOT NULL DEFAULT values)	

	CREATE, USE, ALTER (Add, Remove, Change columns), RENAME, SHOW,	
	DESCRIBE (CREATE TABLE, COLUMNS, STATUS and DATABASES only)	
	and DROP (TABLE, COLUMN, DATABASES statements), PRIMARY KEY	
	FOREIGN KEY (One and more columns) Simple Validity checking using	
	CONSTRAINTS	
Unit-3	MySQL Queries	10
	MySQL Simple queries: The SELECT statement (From, Where, Group By, Having, Order By, Distinct,	
	Filtering Data by using conditions. Simple and complex conditions using logical,	
	arithmetic and relational operators (=,!, =, <, >, <>, AND, OR, NOT, LIKE)	
	Aggregate Functions: count, sum, avg, max, min.	
	Multi-table queries: Simple joins (INNER JOIN), SQL considerations for multi table queries (table	
	aliases, qualified column names, all column selections self joins).	
	Nested Queries: Using sub queries, sub query search conditions, sub queries & joins, nested sub	
	queries, correlated sub queries, sub queries in the HAVING clause. Simple	
	Transaction illustrating START, COMMIT, and ROLLBACK.	

List of Practicals:

- 1. Introduction to MySQL, Database creation, Table creation.
- 2. Data insertion, update/modification/Delete and retrieval through MySQL.
- 3. Basic SQL structure. Query implementation 2 Enforcing integrity constraints (Domain, Key constraints (Primary/Foreign keys), not null, unique, default, Check).
- 4. Creating and updating View. Query implementation using View.
- 5. Use of string functions (Lower, Upper, Proper, mid, len, substring, etc.)
- 6. Use of aggregate functions (AVG, COUNT, MIN, MAX, SUM)
- 7. Use of Date and Time function
- 8. Use of Join operator (Natural join, Outer join (left, right and full)
- 9. Query optimization through Nested Query (Use of logical connectives, set comparison operators, Union, Intersect, Except, Exists clauses)
- 10. Use of Group By and Having clause.

- 1. Elsmasri and Navathe, "Fundamentals of Database Systems" Pearson Education.
- 2. MySQL: The Complete Reference by VASWANI, McGraw Hill.
- 3. Martin Gruber, "Understanding MYSQL", B.P.B. Publications.
- 4. Data base management system, Ramakrishnan, Gehrke, McGraw-Hill.

Semester – III

Paper: MINOR

Course Code: VSMA205

Credits: 4

ORDINARY DIFFERENTIAL EQUATION

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	The main objectives of this course are to introduce the students to the exciting world of
	differential equations.
2.	System of differential equations and their applications.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Understand the genesis of ordinary differential equations.
CO2	Learn various techniques of getting exact solutions of solvable first order differential
	equations and linear differential equations of higher order.
CO3	Grasp the concept of a general solution of a linear differential equation of an arbitrary
	order and also learn a few methods to obtain the general solution of such equations.

Unit	Contents	No. of
		lectures
Unit I	First Order First Degree Differential Equations	10
	Definitions of: Differential Equation, Order and Degree of a differential Equation, Ordinary Differential Equation (ODE), Linear ODE, non-linear ODE.	
	Existence and uniqueness Theorem for the solution of a second order initial value problem (statement only). Definition of Lipchitz function. Examples based on verifying the conditions of existence and uniqueness theorem. Review of solution of homogeneous and non-homogeneous linear differential equations of first order and first degree. Exact Equations: General Solution of	
	equations of first order and first degree. Exact Equations: General Solution of Exact equations of first order and first degree, Necessary and sufficient condition for $Mdx + Ndy = 0$ to be exact.	
	Non-exact equations: Rules for finding integrating factors (without proof) for non-exact equations such as: iv) $\frac{1}{Mx+Ny}$ is an I . F . if $Mx + Ny \neq 0$ and $Mx + Ny = 0$ is	
	homogeneous. v) $\frac{1}{Mx-Ny}$ is an I . F . if $Mx - Ny \neq 0$ and $Mx + Ny = 0$ is of the form $f_1(x,y)ydx + f_2(x,y)xdy = 0$. vi) $e^{\int f(x)dx} (resp e^{\int f(y)dy})$ is an I . F . if $N \neq 0$ (resp $M \neq 0$ and $\frac{1}{N}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$ (resp $\frac{1}{M}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$) is a function of x (resp y) alone, say $f(x)(resp g(y))$.	

	Linear and reducible linear equations of first order. Finding solutions of first order	
	differential equations, applications to orthogonal trajectories, population growth,	
	and finding the current at a given time	
Unit II	Second Order Linear Differential Equations	10
	Homogeneous and non-homogeneous second order linear differentiable equations: The space of solutions of the homogeneous equation as a vector space. Wronskian and linear independence of the solutions. The general solution of homogeneous differential equations. The general solution of a non homogeneous second order equation. Complementary functions and particular integrals. The homogeneous equation with constant coefficients, auxiliary equation. The general solution corresponding to real and distinct roots, real and equal roots and complex roots of the auxiliary equation. Non-homogeneous equations: The method of undetermined coefficients. The method of variation of parameter	
Unit III	Linear Differential Equations with constant coefficients	10
	Complementary function and particular integral. General solution of	
	f(D)y = X. Solution of $f(D)y = 0$, for non-repeated, repeated, real and complex	
	roots of $f(D)y = X$ where X is of the form e^{ax} ,	
	$sinax, cosax, x^m, e^{ax}V, xV.$	

List of suggested Practicals:

- 1) Solving First Order Exact Differential Equations.
- 2) Solving First Order Non-Exact Differential Equations and Finding Integrating Factors.
- 3) Applications of First Order Differential Equations: Orthogonal Trajectories and Population Growth.
- 4) Solving Second Order Linear Homogeneous Differential Equations with Constant Coefficients.
- 5) Solving Non-Homogeneous Second Order Differential Equations: Method of Undetermined Coefficients and Variation of Parameters.
- 6) Solving Linear Differential Equations with Constant Coefficients for Non-Repeated, Repeated, Real, and Complex Roots.
- 7) Miscellaneous.

- 1) William F Trench, Elementary Differential Equations with Boundary Value Problems, E book (Free download)
- 2) Frank Ayres JR, Theory and Problems on Differential Equations, Schaum's outline Series, SI (metric) edition.
- 3) M. D. Raisinghania, Ordinary and Partial Differential Equations, S. Chand Pub. Ltd 2009.
- 4) Elementary Differential Equations seventh edition by Earl D. Rainville and Philip E Bedient.
- 5) George F. Simmons and Stevan G. Krantz, Differential Equations, Tata McGraw-Hill.
- 6) W. R. Derrick and S. I. Grossman, A First Course in Differential Equations with Applications CBS Publishers and Distributors, Delhi 110032, Third Edition.

Semester – IV

Paper I Course Code: VSMA250 Credits: 2

MULTIVARIABLE CALCULUS -II

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Define Euclidean space \mathbb{R}^2 and \mathbb{R}^3 , and the Euclidean norm, open balls, and open sets.
2.	Understand limits, continuity, and differentiability of scalar and vector fields in \mathbb{R}^2 and \mathbb{R}^3 .
3.	Learn directional and partial derivatives, and the gradient of scalar field and Apply the
	second derivative test and Hessian matrix to classify critical points
4.	Apply the method of Lagrange multipliers to solve constrained optimization problems.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Learn conceptual variations while advancing from one variable to several variables in
	calculus and Understand the notion of Limits, continuity in \mathbb{R}^n .
CO2	Find Differentiability of Scalar Field and Apply Chain rule for derivatives, Euler's
	Theorem.
CO3	Find Differentiability of Vector fields and Understand the Hessian matrix, Maxima, minima
	and saddle points.

Contents	No. of
	lectures
Functions of several variable	10
Euclidean space \mathbb{R}^n , Euclidean norm function on \mathbb{R}^n , open ball and open sets in	
\mathbb{R}^n , sequences in \mathbb{R}^n , convergence of sequences and basic properties (These	
concepts should be specifically discussed for \mathbb{R}^2 and \mathbb{R}^3). Functions from \mathbb{R}^n to	
$\mathbb R$ (scalar fields) and from $\mathbb R^n$ to $\mathbb R^m$ (vector fields), limits and continuity of	
scalar fields and vector fields, basic results on algebra of limits and	
continuity, nonexistence of limits, relation between continuity of vector field	
and its component functions. Directional Derivatives and Partial derivatives of	
scalar fields, gradient of a scalar field, mean value theorem for derivatives of	
scalar fields.	
	Euclidean space \mathbb{R}^n , Euclidean norm function on \mathbb{R}^n , open ball and open sets in \mathbb{R}^n , sequences in \mathbb{R}^n , convergence of sequences and basic properties (These concepts should be specifically discussed for \mathbb{R}^2 and \mathbb{R}^3). Functions from \mathbb{R}^n to \mathbb{R} (scalar fields) and from \mathbb{R}^n to \mathbb{R}^m (vector fields), limits and continuity of scalar fields and vector fields, basic results on algebra of limits and continuity, nonexistence of limits, relation between continuity of vector field and its component functions. Directional Derivatives and Partial derivatives of scalar fields, gradient of a scalar field, mean value theorem for derivatives of

Unit II	Differentiability of scalar fields	10
	Differentiability of a scalar field at a point of \mathbb{R}^n (in terms of linear	
	transformation) and on open subsets of \mathbb{R}^n , the total derivative and its properties,	
	uniqueness of total derivative of differentiable functions, differentiability of	
	scalar field implies its continuity, necessary condition for differentiability,	
	sufficient condition for differentiability. Chain rule for derivatives of scalar	
	fields, homogeneous functions and Euler's theorem, sufficient condition for	
	equality of mixed partial derivatives (without proof).	
Unit III	Differentiability of Vector fields and its Applications	10
Unit III	Differentiability of Vector fields and its Applications Differentiability of vector fields, definition of differentiability of a vector field	10
Unit III		10
Unit III	Differentiability of vector fields, definition of differentiability of a vector field	10
Unit III	Differentiability of vector fields, definition of differentiability of a vector field at a point, Jacobian matrix, differentiability of scalar field implies its continuity,	10
Unit III	Differentiability of vector fields, definition of differentiability of a vector field at a point, Jacobian matrix, differentiability of scalar field implies its continuity, chain rule for derivatives of vector fields (without proof).	10
Unit III	Differentiability of vector fields, definition of differentiability of a vector field at a point, Jacobian matrix, differentiability of scalar field implies its continuity, chain rule for derivatives of vector fields (without proof). Mean value inequality. Hessian matrix, Maxima, minima and saddle points,	10

List of suggested practicals:

- 1) Convergence of Sequences in \mathbb{R}^2 and \mathbb{R}^3
- 2) Directional and Partial Derivatives
- 3) Differentiability of Scalar Fields
- 4) Chain Rule for Scalar Field
- 5) Hessian Matrix and Extrema
- 6) Lagrange Multipliers
- 7) Miscellaneous

- 1. Tom M. Apostol, Calculus Vol. 2, second edition, John Wiley, India.
- 2. Jerrold E. Marsden, Anthony J. Tromba, Alan Weinstein, Basic Multivariable Calculus, Indian edition, Springer-Verlag.
- 3. Jerrold E. Marsden, Anthony J. Tromba, Vector Calculus, fifth edition, W.H. Freeman and Co, New York.
- 4. S.C. Malik, Savita Arora, Mathematical Analysis, third edition, New Age International Publishers, India.
- 5. D. Somasundaram, A Second Course in Mathematical Analysis, Narosa Publishing House, India.
- 6. Dennis G. Zill, Warren S. Wright, Calculus Early Transcendentals, fourth edition, Jones and Bartlett Publishers.
- 7. Sudhir R. Ghorpade, Balmohan V. Limaye, A Course in Multivariable Calculus and Analysis, Springer.
- 8. Satish Shirali, Harkrishnan Lal Vasudeva, Multivariable Analysis, Springer.
- 9. William Trench, Introduction to Real Analysis, Free hyperlinked edition

Paper II Course Code: VSMA251

Credits: 2

FOURIER TRANSFORM

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	To enable the students to study Fourier Transforms and some concepts of infinite Fourier Sine and
	Cosine transforms.
2.	Finite Fourier Sine and Cosine transforms and applications to solve some infinite and boundary
	value problems using finite and infinite transforms.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Calculate the Infinite Fourier transform, Fourier Sine and Cosine transform of elementary
	functions from the definition.
CO2	Demonstrate their understanding of the shifting theorems, Fourier integral theorems and Inverse
	Fourier sine and cosine transforms by applying them to appropriate examples.
CO3	Calculate the Finite Fourier cosine and sine transform and apply it in solving boundary value
	problems.

Unit	Contents	No. of
		lectures
Unit I	Fourier Series	10
	Fourier Series: Periodic functions. Fourier co-efficient. Fourier series of	
	functions with period 2π and $2l$. Fourier series of even and odd functions.	
	Half range cosine and sine series.	
Unit II	Fourier Transform	10
	Fourier Transforms: Fourier integrals, Fourier sine and cosine integrals, Complex	
	form of Fourier integral representation, Fourier transform, Fourier transform of	
	derivatives and integrals, Fourier sine and cosine transforms and their properties,	
	Convolution theorem	
Unit III	Application of Fourier transforms	10
	Application of Fourier transforms to solve ordinary differential equations (ODEs) and partial differential equations (PDEs). Boundary Value Problems.	

List of Suggested Practicals

- 1) Fourier Coefficients Calculation
- 2) Fourier Series of Even/Odd Functions
- 3) Half-Range Sine and Cosine Series
- 4) Fourier Transform and Properties
- 5) Fourier Transforms for ODEs
- 6) Fourier Transforms for PDEs
- 7) Miscellaneous.

- 1. "Fourier Transforms and Representation Theory" by David M. Roark
- 2. "Fourier Transforms: Mathematics and Applications" by Mohammed S. Saad
- 3. "Fourier Transform Methods for Digital Signal Processing" by Françoise A. Yao
- 4. "Fourier Transform with Fluctuation Threshold" by Tomasz O. Jelitsin
- 5. "Fourier Transform of Signals and Time-Series" by Wu Wanxiong

Paper III Course Code: VSMA252

Credits: 2

PARTIAL DIFFERENTIAL EQUATION

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	The main objectives of this course are to introduce the students to the exciting world of
	differential equations.
2	System of differential equations and their applications

Course Outcome

Upon completing the course, the student will be able to understand

CO1	To understand the genesis of ordinary differential equations.
CO2	To learn various techniques of getting exact solutions of solvable first order differential
	equations and linear differential equations of higher order.
CO3	To grasp the concept of a general solution of a linear differential equation of an arbitrary order
	and also learn a few methods to obtain the general solution of such equations.

Unit	Contents	No. of
		lectures
Unit I	Introduction To Partial Differential Equations	10
	Partial Differential Equation, Order & Degree of PDE, Surface and Normals,	
	parametric equation of surface, Curves and tangents, Origin of first order	
	partial differential equation. Classification of first order partial differential	
	equation. Linear Equation, Semi-Linear Equation, Quasi Linear Equation,	
	Non-Linear Equation, Formation of first order partial differential equation, By	
	Elimination of arbitrary constants, By Elimination of arbitrary functions.	
Unit II	Linear & Non-Linear Partial Differential Equations of order one	10
	Lagrange's method, working rule for solving $Pp + Qq = R$ By	
	Lagrange's method, Four types of problems based on $Pp + Qq = R$ The	
	Cauchy problem for first order Quasi Linear PDE Existence and Uniqueness	
	of integral surface passing through a given curve. Surface orthogonal to	
	Given System of surface. The linear PDE with n independent variables.	
	Types of solutions (Complete Integral, General Integral, Singular Integral)	
	Method of getting Singular Integral. Charpit's method.	
Unit III	Second order Partial Differential Equation	10
	Introduction of second order PDE. Classification of second order PDE. Characteristic curves, Reduction to canonical forms, Introduction of Heat, Wave & Laplace's Equation.	

List of suggested practicals:

- 1. Formation of First-Order Partial Differential Equations
- 2. Solving First-Order Linear and Non-Linear PDEs Using Lagrange's Method
- 3. Cauchy Problem for First-Order Quasi-Linear PDE
- 4. Existence and Uniqueness of Integral Surface
- 5. Surface Orthogonal to a Given System of Surfaces
- 6. Solving Second-Order Partial Differential Equations
- 7. Miscellaneous

- Ian Sneddon, Element of Partial Differential Equations, McGraw-Hill Book Company, McGraw-Hill Book Company.
- 2. J.N. Sharma, Kehar Singh, Partial Differential equations for Engineers and Scientists, second Edition, Narasa Publications
- 3. T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing, House 2nd Edition, 2003 (Reprint, 2006).
- 4. K. Sankara Rao, Introduction to Partial Differential Equations, Third Edition, PHI.
- 5. M.D.Raisinghania, Ordinary and Partial Differential Equations, 20th Edition, S Chand

Semester -VI Paper : SEC

Course Code: VSMA254

Credits: 2

(C++ PROGRAMMING)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	To introduce students to the syntax and structure of the C++ programming language and to
	develop problem-solving skills through hands-on programming exercises.
2.	To familiarize students with the principles of object-oriented programming (OOP) in C++.
3.	To cultivate good programming practices and coding standards and To prepare students for more
	advanced programming courses.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Identify importance of object-oriented programming and difference between structured.
CO2	oriented and object-oriented programming features and make use of objects and classes for
	developing programs.
CO3	use various object-oriented concepts to solve different problems.

Unit	Contents	No. of
		lectures
Unit-1	Introduction to C++	10
	Object Oriented Methodology: Introduction, Advantages and Disadvantages of	
	Procedure Oriented Languages, Application of OOPS, Principles of OOPS:	
	Objects, Classes, Data Abstraction and Data Encapsulation, Inheritance,	
	Polymorphism, Dynamic Binding, Message Passing. Classes and Objects: Simple	
	classes (Class specification, class members accessing), Defining member functions,	
	passing object as an argument, Returning object from functions, friend classes,	
	friend function. Constructors and Destructors: Introduction, Default	
	Constructor, Parameterized Constructor and examples, Destructors.	
Unit-2	Inheritance	10
	Program development using Inheritance: Introduction, Advantages provided by	
	inheritance, choosing the access specifier, Derived class declaration, derived class	
	constructors, class hierarchies, multiple inheritance, multilevel inheritance, hybrid	

	inheritance. Polymorphism: Concept of function overloading, overloaded	
	operators, overloading unary and binary operators.	
Unit-3	Advanced Concepts and Application Development	10
	Virtual Functions: Introduction and need, Pure Virtual Functions, this Pointer,	
	abstract classes, virtual destructors. Exception Handling: Introduction, Exception	
	Handling Mechanism, Concept of throw & catch with example. Working with	
	Files: Introduction, File Operations, Various File Modes, File Pointer and their	
	Manipulation.	

List of Practicals:

- 1. program for Adding two numbers
- 2. To Check if a number is even or odd
- 3. program to swap two numbers, printing Fibonacci series, factorial of given number
- 4. program to find the largest number among three numbers
- 5. Program to Find the sum of all the natural numbers from 1 to n
- 6. To check whether a number is prime or not.
- 7. Defining function to find the length of a string
- 8. Program to create an array of pointers. Invoke functions using array objects

- 1. Object Oriented Programming with C++ by E Balaguruswamy Tata McGraw Hill India
- 2. Programming: Principles and Practice Using C++" by Bjarne Stroustrup.
- 3. C++ Primer" by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo
- 4. D. Parasons, Object Oriented Programming with C++, BPB Publication.

Semester-VI

Paper: MINOR

Course Code: VSMA255

Credits: 2

PARTIAL DIFFERENTIAL EQUATION

Course Learning Objectives

Upon completion of the course the student will be able to understand

	1.	The main objectives of this course are to introduce the students to the exciting world of
		differential equations.
-	2	System of differential equations and their applications

Course Outcome

Upon completing the course, the student will be able to understand

CO1	To understand the genesis of ordinary differential equations.
CO2	To learn various techniques of getting exact solutions of solvable first order differential
	equations and linear differential equations of higher order.
CO3	To grasp the concept of a general solution of a linear differential equation of an arbitrary order
	and also learn a few methods to obtain the general solution of such equations.

Unit	Contents	No. of
		lectures
Unit I	Introduction To Partial Differential Equations	10
	Partial Differential Equation, Order & Degree of PDE, Surface and Normals,	
	parametric equation of surface, Curves and tangents, Origin of first order	
	partial differential equation. Classification of first order partial differential	
	equation. Linear Equation, Semi-Linear Equation, Quasi Linear Equation,	
	Non-Linear Equation, Formation of first order partial differential equation, By	
	Elimination of arbitrary constants, By Elimination of arbitrary functions.	
Unit II	Linear & Non-Linear Partial Differential Equations of order one	10
	Lagrange's method, working rule for solving $Pp + Qq = R$ By	
	Lagrange's method, Four types of problems based on $Pp + Qq = R$ The	
	Cauchy problem for first order Quasi Linear PDE Existence and Uniqueness	
	of integral surface passing through a given curve. Surface orthogonal to	
	Given System of surface. The linear PDE with n independent variables.	
	Types of solutions (Complete Integral, General Integral, Singular Integral)	
	Method of getting Singular Integral. Charpit's method.	
Unit III	Second order Partial Differential Equation	10
	Introduction of second order PDE. Classification of second order PDE.	
	Characteristic curves, Reduction to canonical forms, Introduction of Heat, Wave	
	& Laplace's Equation.	

List of suggested practicals:

- 1) Formation of First-Order Partial Differential Equations
- 2) Solving First-Order Linear and Non-Linear PDEs Using Lagrange's Method
- 3) Cauchy Problem for First-Order Quasi-Linear PDE
- 4) Existence and Uniqueness of Integral Surface
- 5) Surface Orthogonal to a Given System of Surfaces
- 6) Solving Second-Order Partial Differential Equations
- 7) Miscellaneous

- 1)Ian Sneddon, Element of Partial Differential Equations, McGraw-Hill Book Company, McGraw-Hill Book Company.
- 2) J.N. Sharma, Kehar Singh, Partial Differential equations for Engineers and Scientists, second Edition, Narasa Publications
- 3) T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing, House 2nd Edition, 2003 (Reprint, 2006).
- 4) K. Sankara Rao, Introduction to Partial Differential Equations, Third Edition, PHI.
- 5) M.D.Raisinghania, Ordinary and Partial Differential Equations, 20th Edition, S Chand