

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, email: vazecollege@gmail.com

Syllabus for B. Sc. Third Year Programme Mathematics Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

Board of Studies in Mathematics

V.G Vaze College of Arts, Science and Commerce (Autonomous)

Submitted by

Department of Mathematics Vinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous) Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India. Tel: 022-21631004, Fax: 022-21634262 E-mail: vazecollege@gmail.comWebsite :www.vazecollege.net _____

Syllabus as per Choice Based Credit System (NEP 2020)

Syllabus for Approval

Subject: Mathematics

Sr. No.	Heading	Particulars
1	Title of Programme	Third Year B. Sc. Mathematics: Semester V and VI
2	Eligibility for Admission	The Second Year B.Sc. examination of this university with Mathematics as a Major or Minor subject or any other university recognized as equivalent thereto.
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.
4	Ordinances/Regulations (if any)	
5	No. of Years/Semesters	One year/Two semester
6	Level	U.G. Part-III : Level - 5.5
7	Pattern	Semester
8	Status	Revised
9	To be implemented from Academic year	2025-2026

Date:

Signature:

BOS Chairperson:

Semester	Core Course & Credits		NSQF Course & Credits		
	MAJOR	No. of	VSC/SEC	No. of	
Sem - V		Lectures		Lectures	
	Mandatory* Credits 10 (5 x 2)		VSC Credits 2		
	Course 1 Cr. 2: Advanced Calculus	2L	Course 1 Cr. 2: (Latex for	4L	
			Scientific Writing) Practical		
	Course 2 Cr. 2: Linear Algebra	2L			
	Course 3 Cr. 2: Topology of Metric	2L			
	Spaces-I				
	Course 4 Cr. 2: Integral Equations	2L			
	Course 5 Cr. 2: Practical	4L			
	(Practical Based on all Papers)				
	Electives (selected anyone)		OJT/FP/CEP/CC/RP		
	Credits 4 (2+2)				
	Course 1 Cr. 2: Introduction to Statistics	2L	FP Credits 2		
	Course 2 Cr. 2: Practical based on	4L	Course 1 Cr. 2: Practical	4L	
	Introduction to Statistics				
	Course 3 Cr. 2: Numerical Analysis -I	2L			
	Course 4 Cr. 2: Practical based on	4L			
	Numerical Analysis -I				
	MINOR Credits 4 (2+2)				
	Course 1 Cr. 2: Mathematical Physics	2L		+	
	Course 2 Cr. 2: Practical based on	4L			
	Mathematical Physics				
	MAJOR				
Sem -	Mandatory* Credits 10 (5 x 2)		VSC Credits 2		
VI	Course 1 Cr. 2: Complex Analysis	2L	Course 1 Cr. 2: Python	4L	
			Programming		
	Course 2 Cr. 2: Group Theory	2L			
	Course 3 Cr. 2: Topology of Metric	2L			
	Spaces-II				
	Course 4 Cr. 2: Calculus of Variation	2L			
	Course 5 Cr. 2: Practical	4L			
	(Practical Based on all Papers)				
	Electives (selected anyone)		OJT/FP/CEP/CC/RP		
	Credits 4 (2+2)				
	Course 1 Cr. 2: Operational Research	2L	OJT Credits 4		
	Course 2 Cr. 2: Practical ()	4L	Course 1 Cr. 4: Practical	8L	
	Course 3 Cr. 2: Numerical Analysis -II	2L			
	Course 4 Cr. 2: Practical ()	4L			
	MINOR Credits 2				
	Course 1 Cr. 2: Integral Transforms	2L			
Total Cun	nulative credits = $20 + 08 + 06 + 04 + 06 = 44$	4 Credits		<u>.</u>	
Exit option	n: Award of UG Degree in Major and Minor	with 132 cre	edits OR continue with Major & M	linor	

Third Year B. Sc. Program in Mathematics (Level 5.5)

Level	Sem.	M	IAJOR	MINOR	VSC	OJT / FP	Cum.	Degree
		Mandatory*	Electives Any one]				
	a v	For Mathematics						
5.5	Sem-v	Credits 10 (2+2+2+2) Course 1 Cr. 2: Advanced Calculus Course 2 Cr. 2: Linear Algebra Course 3 Cr. 2: Topology of Metric Spaces I Course 4 Cr. 2: Integral Equations Course 5 Cr. 2: Practical (based on all papers)	Credits 4 (2+2) Course 1 Cr. 2: Mathematical Physics & Course 2 Cr. 2: Practical (Based on Mathematical Physics) OR Course1 Cr. 2: Numerical Analysis-I & Course 2 Cr. 2: Practical (Based on : Numerical Analysis-I)	Credits 4 (2+2) Course 1: Cr. 2: Mathematical Physics & Course 2: Cr. 2: Practical based on Mathematical Physics	Credits 2 (Latex for Scientific Writing) Practical	Credits 2 Practical	22	UG Degree After 3- Yr UG
	Sem-VI	For Mathematics Credits 10 (2+2+2+2) Course 1 Cr.2: Complex Analysis Course 2 Cr.2: Group Theory Course 3 Cr.2: Topology of Metric Spaces II Course 4 Cr.2: Calculus of Variation Course 5 Cr.2: Practical (Based on all Papers)	Credits 4 (2+2) Course 1 Cr. 2: Operational Research & Course 2 Cr. 2: Practical (based on Operational Research) OR Course 1 Cr. 2: Numerical Analysis- II & Course 2 Cr. 2: Practical (Based on : Numerical Analysis-II)	Credits 2 Course 1: Cr. 2: Integral Transform	Credits 2 Practical Based on Major Courses	Credits 4	22	
Total	Credits	20	08	06	04	06	44	

Programme Educational Objectives

PEO1	Mathematical Foundation – Develop strong problem-solving and analytical skills in core mathematical concepts.
PEO2	Real-World Application – Apply mathematical methods in science, engineering, and other fields.
PEO3	Critical Thinking – Enhance logical reasoning and problem-solving abilities.
PEO4	Technology Integration – Utilize modern mathematical software and computational tools.
PEO5	Communication & Teamwork – Effectively communicate mathematical ideas and collaborate in teams.
PEO6	Lifelong Learning – Engage in continuous learning and research in mathematics.
PEO7	Ethical Responsibility – Apply mathematics responsibly in professional and societal contexts.

Programme Outcomes

Upon successful completion of the B.Sc. (Mathematics) course from Vaze College affiliated to Mumbai University, graduates can expect the following outcomes:

PO1	Mathematical Knowledge – Demonstrate a strong understanding of fundamental mathematical concepts and theories.
PO2	Problem-Solving Skills – Apply mathematical techniques to solve real-world problems efficiently.
PO3	Logical and Analytical Thinking – Develop critical thinking, reasoning, and analytical abilities.
PO4	Computational Proficiency – Use mathematical software, programming, and computational tools effectively.
PO5	Data Analysis and Modeling – Interpret and analyze data using mathematical and statistical methods.
PO6	Effective Communication – Convey mathematical ideas clearly through written and verbal communication.
PO7	Interdisciplinary Approach – Apply mathematical knowledge across various fields like physics, economics, and computer science.

Programme Specific Outcomes

PSO1	Core Mathematical Proficiency – Demonstrate expertise in algebra, calculus, differential
	equations, and other fundamental areas of mathematics.
PSO2	Computational and Analytical Skills – Apply mathematical and computational techniques to
	solve theoretical and practical problems.
PSO3	Mathematical Modeling - Develop and analyze mathematical models for real-world
	applications in science, engineering, and economics.
PSO4	Data Interpretation and Statistics – Use statistical and probabilistic methods to analyze and
	interpret data effectively.
PSO5	Software and Programming Proficiency – Utilize mathematical software (such as MATLAB,
	Maxima, or Python) for problem-solving and research.
PSO6	Research and Higher Studies Readiness – Build a strong foundation for advanced studies
	and research in mathematics and related fields.

The Detailed Semester and Course Wise Syllabus as follows:

SEMESTER - V					
Code	Course of Study – Major	L	Т	Р	Cr.
VSMA300	Course 1 Cr. 2: Advanced Calculus	2	-	-	2
VSMA301	Course 2 Cr. 2: Linear Algebra	2	-	-	2
VSMA302	Course 3 Cr. 2: Topology of Metric Spaces-I	2	-	-	2
VSMA303	Course 4 Cr. 2: Integral Equations	2	-	-	2
VSMA304	Course 5 Cr. 2: Practical Based on Course 1 to 4	4	-	2	2
	Electives		-		
VSMA305	Course 1 Cr. 2: Introduction to Statistics	2	-	-	2
VSMA306	Course 2 Cr. 2: Practical based on Introduction to Statistics	4	-	2	2
VSMA307	Course 3 Cr. 2: Numerical Analysis -I	2	-	-	2
VSMA308	Course 4 Cr. 2: Practical based on Numerical Analysis -I	4	-	2	2
	VSC Credits 2		-		
VSMA309	Course 1 Cr. 2: Latex for Scientific Writing	4	-	2	2
	MINOR Credits 4 (2+2)		-		
VSMA310	Course 1 Cr. 2: Mathematical Physics	2	-	-	2
VSMA311	Course 2 Cr. 2: Practical based on Mathematical Physics	4	-	2	2
	FP Credits 2		-		
VSMA312	Course 1 Cr. 2: Practical	4	-	2	2
Tot	al	32	-	10	22

The total minimum credits required for completing the B.Sc. in Mathematics is **132**

***** Note: Students are allowed to select one elective out of two electives given in curriculum

SEMESTER – VI					
Code	Course of Study – Major	L	Τ	P	Cr.
VSMA350	Course 1 Cr. 2: Complex Analysis	2	-	-	2
VSMA351	Course 2 Cr. 2: Group Theory	2	-	-	2
VSMA352	Course 3 Cr. 2: Topology of Metric Spaces-II	2	-	-	2
VSMA353	Course 4 Cr. 2: Calculus of Variation	2	-	-	2
VSMA354	Course 5 Cr. 2: Practical (Practical Based on all Papers)	4	-	2	2
	Electives		-		
VSMA355	Course 1 Cr. 2: Operational Research	2	-	-	2
VSMA356	Course 2 Cr. 2: Practical based on Operational Research	4	-	2	2
VSMA357	Course 3 Cr. 2: Numerical Analysis -II	2	-	-	2
VSMA358	Course 4 Cr. 2: Practical (Numerical Analysis -II)	4	-	2	2
	VSC Credits 2		-		
VSMA359	Course 1 Cr. 2: Python Programming	4	-	2	2
	MINOR Credits 2		-		
VSMA360	Course 1 Cr. 2: Integral Transforms	2	-	-	2
VSMA361	OJT Credits 4		-		
	Course 1 Cr. 2: Practical	6	-	3	4
	•	30	-	11	22

********* Note: Students are allowed to select one elective out of two electives given in curriculum

Semester – V Paper I Course Code: VSMA300 Credits: 2 ADVANCED CALCULUS

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Evaluate double, triple, line, and surface integrals using appropriate techniques and coordinate
	transformations.
2.	Apply fundamental theorems (Fubini's, Green's, Stokes', and Gauss Divergence) to simplify
	and interpret integrals in vector calculus.
3.	Analyze the properties of conservative fields and use integrals to compute physical quantities
	like area, volume, and flux.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Compute double, triple, line, and surface integrals using various coordinate systems and
	techniques.
CO2	Apply Green's, Stokes', and Gauss Divergence Theorems to solve problems in vector calculus.
CO3	Interpret integrals in terms of physical applications such as area, volume, work, and flux.

Unit	Contents	No. of
		lectures
Unit I	Multiple Integral and its Applications	10
	Double Integrals – Definition, interpretation, and applications in volume	
	calculation. Iterated Integrals & Fubini's Theorem – Evaluating double integrals	
	over rectangular and general regions. Double Integrals in Polar Coordinates -	
	Conversion from Cartesian to Polar, setting up limits, and evaluation. Triple	
	Integrals - Definition, setup, and determining limits of integration in three-	
	dimensional space. Triple Integrals in Cylindrical and Spherical Coordinates -	
	Conversion and evaluation in different coordinate systems. Change of Variables in	
	Multiple Integrals - Generalized coordinate transformations, Jacobian, and	
	applications.	

Unit II	Line Integral	10
	Review of Gradient, curl, divergence, and their significance. Parameterized paths	
	in \mathbb{R}^n and Smooth and piecewise smooth paths, closed paths, and orientation.	
	Definition of Line integral of scalar and vector field over a piecewise smooth path	
	and their Properties & Examples. Line integrals of gradient vector fields.	
	Fundamental Theorem of Calculus for Line Integrals. Conservative vector fields:	
	necessary and sufficient conditions. Green's Theorem & its applications to	
	evaluation of line integrals.	
Unit III	Surface Integrals	10
	Definition of Parameterized surfaces, Smooth equivalence and surface area.	
	Definition and Properties of Surface integrals of scalar-valued functions, Surface	
	integrals of vector fields. Gradient, curl, divergence, and basic identities. Stokes'	
	Theorem (proof assuming Green's Theorem) and examples. Gauss Divergence	
	Theorem. Examples and applications.	

- 1. Calculating Area and Volume
- 2. Integration in Polar, Cylindrical, and Spherical Coordinates
- 3. Evaluating Line Integrals
- 4. Verify and apply Green's Theorem.
- 5. Computing Surface Area and Surface Integrals
- 6. Stokes' and Gauss Divergence Theorems
- 7. Miscellaneous theoretical questions based on three units

- 1. Thomas' Calculus George B. Thomas, Maurice D. Weir, and Joel R. Hass
- 2. Calculus: Early Transcendentals James Stewart
- 3. Vector Calculus Jerrold E. Marsden and Anthony J. Tromba
- 4. Advanced Engineering Mathematics Erwin Kreyszig
- 5. Mathematical Methods for Physicists George B. Arfken and Hans J. Weber
- 6. Differential and Integral Calculus Richard Courant

Paper II Course Code: VSMA301 Credits: 2 LINEAR ALGEBRA

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the foundational concepts of vector spaces, including subspaces, basis, and
	dimension, and apply these to real-world examples like \mathbb{R}^n , $\mathbb{R}[x]$ and function spaces.
2.	Analyze linear transformations through their kernel, image, rank-nullity theorem, and matrix
	representation, including effects of basis changes.
3.	Explore inner product spaces by examining norms, orthogonality, projections, and the Gram-
	Schmidt process, with geometric and computational applications in \mathbb{R}^2 , \mathbb{R}^3 and function spaces

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Understand real vector spaces, subspaces, basis, dimension and their properties.
CO2	Understand the notion of Linear transformations & Rank nullity theorem.
CO3	Know the properties of inner product spaces. Know the properties of linear transformation
	and isomorphism theorems & Apply Cauchy-Schwarz inequality for obtaining orthonormal
	basis using Gram-Schmidt orthogonalization.

Unit	Contents	No. of
		lectures
Unit I	Vector Spaces	10
	Vector Spaces Definition of a real vector space, Examples such as	
	$\mathbb{R}^n, \mathbb{R}[x], \mathcal{M}_{mxn}(\mathbb{R})$ space of all real valued functions on a non-empty set. Definition	
	of a subspace of a vector space and examples. Properties of a subspaces, linearly	
	independent/linearly dependent subsets of a vector space, linear span, Basis of a	
	vector space, dimension of a vector space.	
Unit II	Linear Transformation	10
	Definition of linear transformation, Kernel, Image of a linear transformation, Rank	
	and Nullity of a linear transformation, and its properties, Rank nullity theorem and	
	examples. Linear isomorphisms, inverse of a linear isomorphism. Representation of	
	linear maps by matrices and effect under a change of basis, examples.	
Unit III	Inner Product Spaces	10
	Dot product in \mathbb{R}^n . Definition of general inner product on a vector space over \mathbb{R} .	
	Examples of inner product including the inner product	

$\langle f,g \rangle = \int f(t)g(t)dt$ on $C[-\pi,\pi]$ the space of continuous real valued	
functions on $[-\pi, \pi]$, Norm of a vector in an inner product space. Cauchy-Schwartz	
inequality, Triangle inequality, Orthogonality of vectors, Pythagoras theorem and	
geometric applications in \mathbb{R}^2 , Projections on a line, the projection being the closest	
approximation, orthogonal complements of a subspace, Orthogonal complements in	
\mathbb{R}^2 and \mathbb{R}^3 . Orthogonal sets and orthonormal sets in an inner product space,	
Orthogonal and orthonormal bases.	
Gram-Schmidt orthogonalization process, Simple examples in \mathbb{R}^3 and \mathbb{R}^4 .	

- 1. Vector space, linearly dependent / independent vectors.
- 2. Basis, Dimension of vector space.
- 3.Linear Transformation
- 4. Rank and Nullity of linear transformation.
- 5. Inner product spaces, examples. Orthogonal complements in \mathbb{R}^2 and \mathbb{R}^3 .
- 6. Gram-Schmidt method
- 7. Miscellaneous Theoretical Questions based on full paper.

- 1. Serge Lang: Introduction to Linear Algebra, Springer Verlag.
- 2. S. Kumaresan: Linear Algebra A geometric approach, Prentice Hall of India Private Ltd.
- 3. Gilbert Strang, Linear Algebra and its Applications, International Student Edition.
- 4. L. Smith, Linear Algebra, Springer Verlag.
- 5. A. Ramchandran Rao, P. Bhimashankaran; Linear Algebra Tata Mac Graw Hill.

Paper III Course Code: VSMA302 Credits: 2 TOPOLOGY OF METRIC SPACES-I

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Conceptual understanding- definition & basics, open & closed sets, convergence &
	Continuity, Compactness, Completeness etc.
2.	Prove properties of metric spaces using rigorous mathematical reasoning.
3.	Solve problems involving the topology of metric spaces, such as open covers, closure, and
	interior of sets.
4.	Explore the role of metric spaces in real-world problems, such as optimization, analysis,
	and computer science.
5.	Understand how metric spaces provide the foundation for advanced mathematical concepts
	like normed vector spaces and Hilbert spaces.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Define real numbers, identify the convergency and divergency of sequences, explain the		
	limit and continuity of a function at a given point & construct the geometric model of the		
	set of real numbers.		
CO2	Define the existence of a sequence's limit, if there exists, find the limit & explain the		
	notion of limit of a function at a given point and if there exists estimate the limit.		
CO3	Define the notion of continuity and obtain the set of points on which a function is		
	continuous & explain the notion of metric space. Use the open ball on metric spaces,		
	construct the metric topology and define open-closed sets of the space		

Unit	Contents	No. of
		lectures
Unit I	Metric spaces	10
	Definition, examples of metric spaces \mathbb{R} , \mathbb{R}^2 , Euclidean space \mathbb{R}^n with its Euclidean,	
	sup and sum metric, \mathbb{C} (complex numbers), the spaces l^1 and l^2 of sequences and the	
	space $C[a, b]$, of real valued continuous functions on $[a, b]$. Discrete metric space.	
	Metric subspaces, Product of two metric spaces. Open balls and open set in a metric	
	space, examples of open sets in various metric spaces. Hausdorff property. Interior	
	of a set. Properties of open sets. Structure of an open set in \mathbb{R} . Equivalent metrics.	

	Distance of a point from a set, between sets, diameter of a set in a metric space and	
	bounded sets. Closed ball in a metric space, Closed sets- definition, examples. Limit	
	point of a set, isolated point, a closed set contains all its limit points, Closure of a	
	set and boundary of a set.	
Unit II	Sequences and Complete metric spaces	10
	Sequences in a metric space, Convergent sequence in metric space, Cauchy	
	sequence in a metric space, subsequences, examples of convergent and Cauchy	
	sequence in finite metric spaces, \mathbb{R}^n with different metrics and other metric spaces.	
	Characterization of limit points and closure points in terms of sequences. Definition	
	and examples of relative openness/closeness in subspaces. Definition of complete	
	metric spaces, Examples of complete metric spaces, Completeness property in	
	subspaces, Nested Interval theorem in \mathbb{R} , Cantor's Intersection Theorem,	
	Applications of Cantors Intersection Theorem: The set of real Numbers is	
	uncountable, Density of rational Numbers, Intermediate Value theorem:	
Unit III	Compact sets	10
	Definition of compact metric space using open cover, examples of compact sets in	
	different metric spaces \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^n , Properties of compact sets: A compact set is closed	
	and bounded, (Converse is not true). Every infinite bounded subset of compact	
	metric space has a limit point. A closed subset of a compact set is compact. Union	
	and Intersection of Compact sets. Equivalent statements for compact sets in \mathbb{R} :	
	Sequentially compactness property, Heine Borel property, Closed and boundedness	
	property.	

- 1. Example of metric spaces, normed linear spaces
- 2. Sketching of open balls in \mathbb{R}^2 and open sets in metric spaces/ normed linear spaces, interior of a set, subspaces
- 3. Closed sets, sequences in a metric space
- 4. Limit points, dense sets, separability, closure of a set, distance between two sets.
- 5. Complete metric space
- 6. Cantor's Intersection theorem and its applications
- 7. Miscellaneous theory questions from all unit

- 1. S. Kumaresan, Topology of Metric spaces.
- 2. E. T. Copson. Metric Spaces. Universal Book Stall, New Delhi.
- **3**. Expository articles of MTTS programme.

Paper IV Course Code: VSMA303 Credits: 2 INTEGRAL EQUATIONS

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Identify and classify different types of integral equations (e.g., Volterra vs. Fredholm, first-
	kind vs. second-kind).
2.	Explain the connections between integral equations and differential equations.
3.	Solve simple integral equations analytically using methods such as: Successive substitutions,
	Successive approximations. Resolvent kernel methods. Laplace and Fourier transforms.
4.	Formulate and model physical, biological, and engineering problems as integral equations

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Understanding Integral Equations & Analytical Solution Techniques
CO2	Demonstrate knowledge of the theoretical foundation for the existence and uniqueness of
	solutions & implement numerical techniques, including quadrature methods, discretization,
	and iterative schemes, to approximate solutions of integral equations.
CO3	Applications of Integral Equations & Understand the properties of Riemann integrable
	functions, The applications of the fundamental theorems of integration.

Unit	Contents	No. of
		lectures
Unit I	Introduction of Integral Equation	10
	Definition of Integral Equations and their classifications. Eigen values and Eigen	
	functions. Special kinds of Kernel, Convolution Integral. The inner or scalar product	
	of two functions. Reduction to a system of algebraic equations. Fredholm	
	alternative, Fredholm theorem, Fredholm alternative theorem, an approximate	
	method.	
Unit II	Solution of Fredholm equation	10
	Method of successive approximations, Iterative scheme for Fredholm and Volterra	
	Integral equations of the second kind. Conditions of uniform convergence and	
	uniqueness of series solution. Some results about the resolvent Kernel. Application	
	of iterative scheme to Volterra integral equations of the second kind. Classical	
	Fredholm's theory, the method of solution of Fredholm equation, Fredholm's First	
	theorem, Fredholm's second theorem, Fredholm's third theorem.	

Unit III	Solution of Volterra equation	10
	Symmetric Kernels, Complex Hilbert space. An orthonormal system of functions,	
	Riesz-Fisher theorem, A complete two-Dimensional orthonormal set over the	
	rectangle a Fundamental property of Eigenvalues and Eigenfunctions for symmetric	
	Kernels. Expansion in eigen functions and Bilinear form. Hilbert-Schmidt theorem	
	and some immediate consequences. Definite Kernels and Mercer's theorem.	
	Solution of a symmetric Integral Equation. Approximation of a general -Kernel (not	
	necessarily symmetric) by a separable Kernel. The operator method in the theory of	
	integral equations	

- 1. Analytical Solution of a Fredholm Integral Equation.
- 2. Numerical Solution Using the Trapezoidal Rule.
- 3. Application: Heat Conduction Problem.
- 4. Inverse Problem: Image Deblurring.
- 5. Eigenvalues of a Symmetric Kernel.
- 6. Properties of Riemann integral, non-Riemann integrable function.

7. Miscellaneous theoretical questions based on three units

- 1. "Integral Equations" by F.G. Tricomi
- 2. "Elements of Integral Equations" by M.A. Khuri
- 3. "Integral Equations and Applications" by C. Corduneanu .

Semester – V Paper V: Electives-1 Course Code: VSMA305 Credits: 2 (INTRODUCTION TO STATISTICS)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Provide a strong foundation in descriptive and inferential statistical methods.
2.	Develop skills in hypothesis testing and data interpretation.
3.	Equip students to use statistical methods in practical scenarios.

COURSE OUTCOME

Upon completing the course, the student will be able to

CO1	Understand and apply descriptive and inferential statistical methods.
CO2	Conduct and interpret hypothesis tests with confidence.
CO3	Use statistical reasoning to solve real-world problems.

Unit	Contents	No. of lectures
Unit-1	Foundations of Statistics	10
	Introduction to Statistics and Real-Life Applications, Types of Data: Qualitative vs.	
	Quantitative, Levels of Measurement, Data Collection and Sampling Techniques,	
	Measures of Central Tendency: Mean, Median, Mode, Measures of Dispersion: Range,	
	Variance, Standard Deviation.	
Unit-2	Probability and Probability Distributions	10
	Introduction to Probability: Basic Rules and Applications, Probability Distributions:	
	Binomial Distribution, Normal Distribution and Its Properties, Concept of Population	
	vs. Sample, Sampling Distributions	
Unit-3	Inferential Statistics and Hypothesis Testing	10
	Basics of Estimation: Point and Interval Estimates, Hypothesis Testing Basics: Null and	
	Alternative Hypothesis Type I and Type II Errors, Significance Levels and p-values,	
	One-Sample Hypothesis Tests (z-test, t-test), Two-Sample Hypothesis Tests	
	(Independent and Paired t-tests), Chi-Square Test for Independence and Goodness-of-	
	Fit.	

- 1. Exploring Data and Measures of Central Tendency
- 2. Measures of Dispersion and Variability
- 3. Probability and Binomial Distribution
- 4.Normal Distribution and Sampling
- 5. Hypothesis Testing with One-Sample Tests
- 6.Chi-Square Test for Independence

Reference Books:

- 1. Fundamentals of Statistics by S.C. Gupta
- 2. Statistical Methods by S.P. Gupta
- 3. Probability, Statistics, and Random Processes by T. Veerarajan
- 4. Applied Statistics and Probability for Engineers" by R. Jayaprakash Reddy

Paper V: Electives-2 Course Code: VSMA307 Credits: 2 (NUMERICAL ANALYSIS-I)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1	l.	Provide a strong foundation in descriptive and inferential statistical methods.
2	2.	Develop skills in hypothesis testing and data interpretation.
3	3.	Equip students to use statistical methods in practical scenarios.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Understand Newton-Raphson method, Secant method, Regula-Falsi method, and their rate of
	convergence.
CO2	Learn Iteration methods: Muller method, Chebyshev method, Multipoint iteration method and
	their rate of convergence.
CO3	Learn Doolittle and Crouts method, Choleskys method, Jacobi iteration method, Gauss-Siedal
	method and convergence analysis.

Unit-1	Errors Analysis and Transcendental & Polynomial Equations	10
	Measures of Errors: Relative, absolute and percentage errors. Types of errors: Inherent	
	error, Round-off error and Truncation error. Taylor's series example. Significant digits	
	and numerical stability. Concept of simple and multiple roots. Iterative methods, error	
	tolerance, use of intermediate value theorem. Iteration methods based on first degree	
	equation: Newton-Raphson method, Secant method, Regula-Falsi method, Iteration	
	Method. Condition of convergence and Rate of convergence of all above methods	
Unit-2	Transcendental and Polynomial Equations	10
	Iteration methods based on second degree equation: Muller method, Chebyshev	
	method, Multipoint iteration method. Iterative methods for polynomial equations;	
	Descarts rule of signs, Birge-Vieta method, Bairstrow method. Methods for multiple	
	roots. Newton-Raphson method. System of non-linear equations by Newton- Raphson	
	method. Methods for complex roots. Condition of convergence and Rate of	
	convergence of all above methods	
Unit-3	Linear System of Equations	10
	Matrix representation of linear system of equations. Direct methods: Gauss elimination	
	method. Pivot element, Partial and complete pivoting, Forward and backward	

substitution method, Triangularization methods-Doolittle and Crout's method,	
Choleskys method. Error analysis of direct methods. Iteration methods: Jacobi iteration	
method, Gauss-Siedal method. Convergence analysis of iterative method. Eigen value	
problem, Jacobis method for symmetric matrices Power method to determine largest	
eigenvalue and eigenvector.	

- 1. Newton-Raphson method, Secant method, Regula-Falsi method, Iteration Method
- 2. Muller method, Chebyshev method, Multipoint iteration method
- 3. Descarts rule of signs, Birge-Vieta method, Bairstrow method
- 4. Gauss elimination method, Forward and backward substitution method,
- 5. Triangularization methods-Doolittles and Crouts method, Choleskys method
- 6. Jacobi iteration method, Gauss-Siedal method Eigen value problem: Jacobis method for symmetric

matrices and Power method to determine largest eigenvalue and eigenvector

7. Miscellaneous theoretical questions from all units

Reference Books:

1. Kendall E. and Atkinson, An Introduction to Numerical Analysis, Wiley.

2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.

3. S.D. Conte and Carl de Boor, Elementary Numerical Analysis, An algorithmic approach, McGraw Hill International Book Company.

- 4. S. Sastry, Introductory methods of Numerical Analysis, PHI Learning.
- 5. Hildebrand F.B., Introduction to Numerical Analysis, Dover Publication, NY.
- 6. Scarborough James B., Numerical Mathematical Analysis, Oxford University Press, New Delhi.

Semester – V Paper : VSC Course Code: VSMA309 Credits: 2 (LATEX FOR SCINTIFIC WRITING)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the basics of LaTeX, its applications, and the process of preparing and compiling
	input files.
2.	Learn LaTeX syntax for formatting words, lines, paragraphs, and managing text through
	listing and tabbing.
3.	Develop skills to create and customize tables using various LaTeX environments.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Create structured LaTeX documents with proper text formatting, alignment, and spacing.
CO2	Apply advanced features like emphasized fonts, sectional units, numbered item references, and
	tabbed text.
CO3	Design professional tables with adjustable columns, merged cells, rotated text, and
	customized formatting.

Unit	Contents	No. of
		lectures
Unit-1	Introduction to LaTeX	10
	Definition and application of LaTeX, Preparation and Compilation of LaTeX input file,	
	LaTeX Syntax, Keyboard Characters in LaTeX.	
Unit-2	Formatting in LaTeX	10
	Text and Math mode fonts, Emphasized and colored font, Sectional unit, Labeling and	
	referring numbered item, Text alignment and quoted text, new lines and paragraphs,	
	Creating and filling blank spaces, Producing dashes with text, Listing text, Tabbing text	
	through the tabbing environment	
Unit-3	Table Preparation and Beamer	10
	Table through the tabular environment, Table through the tabular x environment,	
	Vertical positioning of tables, Sideways (rotated) text in table, adjusting column width	
	in table, Additional provision for customizing text in table, Merging rows and columns	
	in table. Basics of Beamer.	

List of Practicals:

- 1. Introduction to LaTeX
- 2. Syntax and Keyboard characters in LaTeX
- 3. Fonts in LaTeX
- 4. Sections, labelling and text alignment in LaTeX
- 5. New lines, paragraphs, blank space and dashes in LaTeX
- 6. Listing text –I
- 7. Listing text –II
- 8. Tabbing text
- 9. Table through tabular environment
- 10. Table through the tabularx environment
- 11. Positioning text in table
- 12. Customizing text in LaTeX

- LaTeX in 24 Hours, A practical guide for scientific writing, Dilip Datta, Springer International Publishing, 2017.
- LaTeX, A Document Preparation System, User's Guide and Reference Manual, Leslie Lamport, Addison-Wesley Publishing Company, Inc., 1994.
- 3. LaTeX Beginner's Guide, Stefan Kottwitz, Packt Publishing Ltd, 2011.
- 4. LaTeX and Friends, M.R.C. van Dongen, Springer-Verlag Berlin Heidelberg ,2012.

Semester – V Paper: MINOR Course Code: VSMA310 Credits: 2 (MATHEMATICAL PHYSICS)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Grasp the fundamental principles of vector calculus and matrix algebra.
2.	Understand the mathematical foundations essential for modeling physical phenomena.
3.	Apply vector calculus to analyze fields and flow systems in physics, such as electromagnetism and fluid dynamics.
4.	Utilize matrix algebra for solving systems of linear equations and performing linear transformations.
5.	Integrate mathematical tools into physics problems, including eigenvalue problems, gradient analysis, and coordinate transformations

COURSE OUTCOME

Upon completing the course, the student will be able to

CO1	Vector Calculus and Applications – Demonstrate proficiency in vector algebra,
	differentiation, and integration, including gradient, divergence, curl, and integral theorems,
	with applications in physics such as electromagnetism and fluid dynamics.
CO2	Linear Algebra and Matrix Operations - Apply matrix operations, determinants,
	eigenvalues, and eigenvectors to solve systems of linear equations and analyze physical
	transformations in quantum mechanics, stability analysis, and mechanical systems.
CO3	Mathematical Methods in Physics – Utilize vector calculus, linear algebra, and integral
	theorems to solve problems in electromagnetic field theory, heat flow, fluid dynamics, and
	coordinate transformations.

Unit	Contents	No. of
		lectures
Unit-1	Vector Calculus	10
	Review of vector algebra: addition, subtraction, dot product, cross product, and their	
	physical significance, Triple products and applications in physics. Gradient of a scalar	
	field, its physical interpretation, and applications. Divergence and Curl of a vector field:	
	properties, physical significance, and examples & Del operator and its operations in	
	Cartesian coordinates. Line integrals: calculation and applications, Surface integrals:	

	flux across a surface & Volume integral: applications in physics. Statement and	
	applications of Green's theorem, Gauss's divergence theorem, and Stokes' theorem &	
	Use of the theorems in solving physics problems.	
Unit-2	Matrix Algebra	10
	Types of matrices: square, diagonal, identity, symmetric, skew-symmetric, and	
	Hermitian matrices. Operations on matrices: addition, multiplication, and scalar	
	multiplication. Properties of determinants & Calculation of inverses using adjoint and	
	determinant methods. Definition and physical significance, Methods to find eigenvalues	
	and eigenvectors & Applications in physics (e.g., quantum mechanics, stability	
	analysis). Rotations, reflections, and scaling in two and three dimensions and	
	Application to coordinate transformations in physics.	
Unit-3	Applications in Physics	10
	Electromagnetic field theory: Gradient, divergence, and curl in Maxwell's equations.	
	Fluid dynamics: velocity field, circulation, and vorticity & Heat flow and diffusion	
	equations. Systems of linear equations and their solutions using matrices, Matrix	
	representation of linear transformations in quantum mechanics. Normal modes and	
	vibrations in mechanical systems using eigenvalues and eigenvectors. Tensor algebra	
	basics (if time permits) & Diagonalization of matrices and applications in simplifying	
	physical systems.	

1. Gradient, Divergence, and Curl: Compute and visualize gradient, divergence, and curl of vector fields.

2. Verification of Theorems: Verify Green's, Gauss's, and Stokes' theorems using integrals.

3. Matrix Operations and Inverses: Perform addition, multiplication, and inverse calculation of different types of matrices.

4. Eigenvalues, Eigenvectors, and Transformations: Compute eigenvalues, eigenvectors, and apply rotation, reflection, and scaling in physics.

5. Vector Calculus in Physics: Compute gradient, divergence, and curl in Maxwell's equations and fluid dynamics.

6. Matrix Methods in Physics: Solve linear systems, analyze quantum transformations, and study normal modes using eigenvalues.

- 1. "Vector Calculus" by Jerrold E. Marsden and Anthony J. Tromba.
- 2. "Advanced Engineering Mathematics" by Erwin Kreyszig.
- 3. "Introduction to Linear Algebra" by Gilbert Strang.
- 4. "Matrices and Linear Algebra" by Hans Schneider and George Phillip Barker.
- 5. "Mathematical Methods for Physicists" by George B. Arfken and Hans J. Weber.

Semester – VI Paper I Course Code: VSMA350 Credits: 2 COMPLEX ANALYSIS

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand how complex numbers provide a satisfying extension of the real numbers.
2.	Learn techniques of complex analysis that make practical problems easy (e.g. graphical
	rotation and scaling as an example of complex multiplication).
3.	Appreciate how mathematics is used in design (e.g. conformal mapping).
4.	Learn how to find the radius of convergence, disc of convergence.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Complex Functions and Differentiation – Understand the fundamental concepts of	
	complex functions, limits, continuity, and differentiation, including Cauchy-Riemann	
	equations and harmonic functions, with applications in mathematical physics.	
CO2	2 Complex Integration and Theorems – Evaluate contour integrals using Cauchy?	
	theorems, and the Cauchy integral formula, and apply them to solve problems in complex	
	analysis.	
CO3	Series Expansions and Residue Theorem – Analyze the convergence of sequences and	
	series, apply Taylor and Laurent series, classify singularities, and use the residue theorem	
	to evaluate complex integrals.	

Unit	Contents	No. of
		lectures
Unit I	Analytic Functions	10
	Functions of a Complex Variables, Limits, Theorems on limits, Limits involving	
	the point at infinity, Derivatives of complex functions, Cauchy- Riemann	
	Equations, Polar coordinates, Analytic functions, Harmonic functions.	

Unit II	Complex Integrals	10
	Exponential function, logarithmic function, trigonometric functions, hyperbolic	
	functions, and their properties, linear fractional transformations.	
	Evaluating the contour integral of complex functions, Cauchy's integral theorem,	
	Cauchy-Goursat theorem, Morera theorem, The Cauchy integral formula,	
	consequences of the Cauchy integral formula, derivative of analytic functions.	
Unit III	Complex Power Series	10
	Taylor's theorem for analytic functions, power series of complex numbers and	
	related results, radius of convergence, disc of convergence, uniqueness of series	
	representation, Laurent series, definition of isolated singularity, type of isolated	
	singularities viz. removable, pole and essential defined using Laurent series	
	expansion, Cauchy residue theorem and calculation of residue, applications of	
	residues	

- 1. Limit and continuity and sequence of complex numbers
- 2. Derivatives of complex functions, analytic & harmonic functions
- 3. Elementary functions and Mobius transformation
- 4. Cauchy integral formula & derivative of analytic function
- 5. Laurent series and singularities
- 6. calculation of residues and applications.
- 7. Miscellaneous theoretical questions based on three units

Reference Books:

1. J.W. Brown and R.V. Churchill, Complex Variables and Applications, International Student Edition, 2009.

- 2. S. Ponnusamy, Complex Analysis, (Second Edition Narosa).
- 3. L. V. Ahlfors, Complex Analysis, (3rd edition, McGraw Hill), 2000.
- 4. H. A. Priestley, Introduction to Complex Analysis (2nd edition (Indian), Oxford), 2006.

Paper II Course Code: VSMA351 Credits: 2 GROUP THEORY

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the definition and key concepts of groups, abelian groups, and subgroups.
2.	Differentiate between finite and infinite groups, including examples such as the Klein 4-group,
	symmetric groups S_n , and dihedral groups D_n .
3.	Learn the definition and properties of cyclic groups and cyclic subgroups, with examples like
	${\mathbb Z}$, ${\mathbb Z}_n \; ext{and} \; \mu(n)$
4.	Explore cosets, Lagrange's theorem, group homomorphisms, kernels, images, isomorphisms, and
	automorphisms with practical examples.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Fundamentals of Group Theory – Understand the definition, types, and properties of groups,
	including abelian groups, symmetric groups, dihedral groups, and their role in mathematical
	structures and symmetries.
CO2	Subgroups and Cyclic Groups - Analyze subgroups, cyclic groups, their properties, and
	applications, including the Euler φ function and Lagrange's theorem with its consequences, such
	as Fermat's Little Theorem.
CO3	Group Homomorphisms and Isomorphisms – Explore group homomorphisms, kernels, images,
	isomorphisms, and automorphisms, with applications in structural transformations and
	symmetry analysis.

Unit	Contents	No. of
		lectures
Unit I	Groups and Subgroups	10
	Definition of a group, abelian group, order of a group, Finite and infinite groups.	
	Klein 4-group, The symmetric group Sn . The group of symmetries of a plane	
	figure. The Dihedral group Dn as the group of symmetries of a regular polygon of	
	n sides (for $n = 3$; 4). Subgroups, definition and examples, Necessary and	
	sufficient condition for a non-empty subset to be a subgroup. The Centre of a group.	

Unit II	Cyclic Groups and Cyclic subgroups	10
	Definition of a cyclic group, a finite group of order n is a cyclic group iff it contains	
	an element of order n, subgroup of a cyclic group is cyclic. Examples of Z , Zn , and	
	$\mu(n)$ as Cyclic groups. Properties of cyclic groups, Number of generators of a cyclic	
	group, group of prime order is cyclic, Euler φ function.	
Unit III	Lagrange's Theorem and Group homomorphism	10
	Definition of coset and its properties, Lagrange's theorem and consequences such	
	as Fermat's Little theorem, Group homomorphisms Kernel and image of a group	
	homomorphism, Group isomorphisms, Automorphisms of a group. inner	
	automorphism. Examples and properties.	

- 1. Examples and properties of groups.
- 2. Group of symmetry of equilateral triangle, rectangle, square.
- 3. Subgroups.
- 4. Cyclic groups, cyclic subgroups, finding generators of every subgroup of a cyclic group.
- 5. Left and right cosets of a subgroup, Lagrange's Theorem.
- 6. Group homomorphisms, isomorphisms.
- 7. Miscellaneous Theoretical questions based on full paper.

- 1. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, Second edition.
- 2. N.S. Gopalakrishnan, University Algebra, Wiley Eastern Limited.
- 3. M. Artin, Algebra, Prentice Hall of India, New Delhi.
- 4. P.B. Bhattacharya, S.K. Jain, S. Nagpaul. Abstract Algebra, 2nd edition, New Delhi.
- 5. J.B. Fraleigh, A first course in Abstract Algebra, Third edition, Narosa, New Delhi.
- 6. J. Gallian. Contemporary Abstract Algebra. Narosa, New Delhi.
- 7. Combinatorial Techniques by Sharad S. Sane, Hindustan Book Agency.
- 9. T. W. Hungerford. Algebra, Springer.
- 10. D. Dummit, R. Foote. Abstract Algebra, John Wiley & Sons, Inc.
- 11. I.S. Luther, I.B.S. Passi. Algebra. Vol. I and II

Paper III Course Code: VSMA352 Credits: 2 TOPOLOGY OF METRIC SPACES-II

Course Learning Objectives

Upon completion of the course the student will be able to understand

1	Explore the role of metric spaces in real-world problems, such as optimization, analysis, and
1.	Explore the role of metric spaces in real-world problems, such as optimization, analysis, and
	computer science.
2.	Understand how metric spaces provide the foundation for advanced mathematical concepts
	like normed vector spaces and Hilbert spaces
	ince normed vector spaces and rindert spaces.
3.	Develop the ability to think abstractly and work with general spaces beyond the Euclidean
	setting.
4.	Enhance problem-solving skills and logical reasoning within the framework of metric spaces.
5	
5.	Build a foundation for further studies in analysis, topology, and related disciplines.

Course Outcome

Upon completing the course, the student will be able to understand

CO1	Continuity and Fixed-Point Theorems – Understand the epsilon-delta definition of continuity
	in metric spaces, properties of continuous functions, contraction mappings, and fixed-point
	theorems with applications.
	Connectedness and Path Connectedness – Analyze concepts of connected and disconnected
CO2	metric spaces, continuity preserving connectedness, and path connectedness in \mathbb{R}^n with
	applications to convex sets and connected components.
CO3	Sequences and Series of Functions - Examine pointwise and uniform convergence of
	function sequences, convergence tests like Weierstrass M-test, power series properties, and
	their applications in defining and analyzing classical functions.

Unit	Contents	No. of
		lectures
Unit I	Continuous functions on metric spaces	10
	Epsilon-delta definition of continuity at a point of a function from one metric	
	space to another. Characterization of continuity at a point in terms of sequences,	
	open sets and closed sets and examples, Algebra of continuous real valued	
	functions on a metric space. Continuity of composite continuous function.	
	Continuous function on compact metric space. Contraction mapping and fixed	
	point theorem, Applications.	

Unit II	Connected sets	10
	Separated sets- Definition and examples, disconnected sets, disconnected and	
	connected metric spaces, Connected subsets of \mathbb{R} . A continuous image of a	
	connected set is connected. Characterization of a connected space, viz. a metric	
	space is connected if and only if every continuous function from X to $\{1, -1\}$ is	
	a constant function. Path connectedness in \mathbb{R}^n , definition and examples. A path	
	connected subset of \mathbb{R}^n is connected, convex sets are path connected. Connected	
	components.	
Unit III	Sequence and series of functions	10
	Sequence of functions - pointwise and uniform convergence of sequences of	
	real- valued functions, examples. Relation between Uniform convergence &	
	pointwise convergence, series of functions, convergence of series of functions,	
	Weierstrass M-test. Examples. Power series in \mathbb{R} centered at origin and at some	
	point in ${\mathbb R}$, radius of convergence, region (interval) of convergence, uniform	
	convergence, term by-term differentiation and integration of power series,	
	Examples. Uniqueness of series representation, functions represented by power	
	series, classical functions defined by power series such as exponential, cosine	
	and sine functions, the basic properties of these functions.	

- 1. Compact sets in various metric spaces
- 2. Compact sets in \mathbb{R}^n
- 3. Continuity in a metric space
- 4. Uniform continuity, contraction maps, fixed point theorem
- 5. Connectedness in metric spaces
- 6. Path connectedness.
- 7. Miscellaneous theory questions on all units

- 1. S. Kumaresan, Topology of Metric spaces.
- 2. E. T. Copson. Metric Spaces. Universal Book Stall, New Delhi.
- **3**. Robert Bartle and Donald R. Sherbert, Introduction to Real Analysis, Second Edition, John Wiley and Sons.
- 4. Ajit Kumar, S. Kumaresan, Basic course in Real Analysis, CRC press 5. R.R.

Paper IV Course Code: VSMA353 Credits: 2 CALCULUS OF VARIATION

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the historical development and importance of calculus of variations in mathematics
	and physics.
2.	Formulate variational problems and apply the fundamental principles of calculus of variations.
3.	Derive and solve the Euler-Lagrange equation for basic variational problems with fixed and
	movable boundaries
4.	Solve real-world problems involving optimization of functionals in one or two variables.
5.	Analyze variational problems with free or constrained boundaries and interpret the physical
	significance of solutions.

Course Outcome

Upon completing the course, the student will be able to understand

Understand the origin and significance of calculus of variations & Formulate variational
problems from physical and mathematical contexts
Derive and solve the Euler-Lagrange equation for basic variational problems & Interpret the
results in terms of optimal solutions.
Handle variational problems with movable boundary conditions.

Unit	Contents	No. of
		lectures
Unit I	Introduction to Calculus of Variations	10
	Historical background and motivation. Basic concepts: functional, extremals, and	
	variations. Examples of variational problems: geodesics, brachistochrone	
	problem, and minimal surfaces	
Unit II	Fundamental Concepts and the Euler-Lagrange Equation	10
	Derivation of the Euler-Lagrange equation. Necessary conditions for an extremum.	
	Examples and applications: shortest path and isoperimetric problem.	
Unit III	Variations with Fixed and Movable Boundaries	10
	Transversality condition. Variational problems with end points not fixed. Examples	
	with free boundaries	

List of Practicals:

1. Solving Variational Problems: Find extremals for geodesics, the brachistochrone problem, and minimal surfaces.

2. Calculus of Variations Applications: Use functionals and variations to solve physics-based optimization problems.

3. Euler-Lagrange Equation: Derive and apply it to find extremals in variational problems.

4. Applications in Physics and Geometry: Solve shortest path and isoperimetric problems using the Euler-Lagrange equation.

5. Fixed vs. Movable Boundaries: Solve variational problems with and without fixed endpoints.

6. Transversality Condition Applications: Apply transversality conditions to free-boundary problems in physics and geometry.

Reference Books:

1. "Introduction to the Calculus of Variations" by Hans Sagan.

2. "Calculus of Variations" by I.M. Gelfand and S.V. Fomin.

3. "The Calculus of Variations" by Bruce van Brunt.

Semester – VI Paper V: Electives-1 Course Code: VSMA355 Credits: 2 (OPERATIONAL RESEARCH)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the Scope and Applications of Operations Research: Explore the historical background,
	scope, and importance of operations research in solving real-world industrial and business problems.
2.	Learn Optimization Techniques: Develop the ability to formulate and solve problems using
	techniques such as Linear Programming, Simplex Method, and Sensitivity Analysis.
3.	Master Decision-Making Tools: Gain proficiency in transportation and assignment problem-solving
	methods, network models, CPM, and PERT for efficient resource allocation and scheduling.
4.	Explore Advanced Concepts: Understand and apply advanced techniques like Integer Programming,
	Dynamic Programming, Game Theory, and Queueing Theory.

COURSE OUTCOME

Upon completing the course, the student will be able to

CO1	Problem-Solving Proficiency: Students will be able to formulate and solve optimization problems,
	including LPPs, transportation, and assignment problems, using appropriate methods. Effective
	Decision-Making Skills: Apply decision-making models under certainty, uncertainty, and risk to
	optimize resource allocation and project scheduling.
CO2	Competence in Advanced Techniques: Use advanced optimization methods, including Integer
	Programming and Game Theory, to solve multistage decision problems and strategic scenarios.
CO3	Practical Application of OR Tools: Demonstrate the ability to analyze real-world scenarios in
	logistics, finance, and operations using operations research tools and methodologies.

Unit	Contents	No. of
		lectures
Unit-1	Introduction to Operations Research	10
	Overview of Operations Research Historical background, scope, and applications in	
	industries. Linear Programming Problem (LPP) Formulation of LPP and graphical	
	solutions. Simplex Method Concept, tabular approach, and basic feasible solutions.	
	Duality in Linear Programming Dual problems and economic interpretation. Sensitivity	
	Analysis Impact of parameter changes on the optimal solution.	

Unit-2	Decision Making and Resource Allocation	10
	Transportation Problems Formulation, methods (North-West Corner, Least Cost,	
	Vogel's Approximation). Assignment Problems Hungarian method and applications in	
	workforce optimization. Network Models: Shortest Path Problem and Minimum	
	Spanning Tree. Project Scheduling Critical Path Method (CPM) and Program	
	Evaluation Review Technique (PERT). Decision Theory Decision-making under	
	certainty, uncertainty, and risk.	
Unit-3	Advanced Optimization Techniques and Applications	10
	Integer Programming Formulation and branch-and-bound method. Dynamic	
	Programming Concepts and applications in multistage decision problems. Game Theory	
	Basics Two-person zero-sum games, saddle point, and mixed strategies. Queueing	
	Basics Two-person zero-sum games, saddle point, and mixed strategies. Queueing Theory Introduction, characteristics, and basic models. Real-World Case Studies and	

1.Linear Programming Problem (LPP) using Graphical and Simplex Methods

- 2. Transportation Problem Optimization
- 3. Assignment Problem Using Hungarian Method
- 4. Network Models: Shortest Path and Minimum Spanning Tree
- 5. Project Scheduling with CPM and PERT
- 6. Game Theory and Queueing Models

Reference Books:

- 1. Operations Research: An Introduction by Hamdy A. Taha
- 2. Introduction to Operations Research by Frederick S. Hillier and Gerald J. Lieberman.
- 3. Operations Research: Principles and Practice by Ravindran, Phillips, and Solberg.
- 4. Operations Research by S.D. Sharma
- 5. Quantitative Techniques in Management by N.D. Vohra

Paper V: Electives-2 Course Code: VSMA357 Credits: 2 (NUMERICAL ANALYSIS -II)

Course Learning Objectives

Upon completion of the course the student will be able to understand

4.	Analyze and evaluate the accuracy of common numerical methods.
	differential equations.
	differentiation, integration, the solution of linear and nonlinear equations, and the solution of
3.	Derive numerical methods for various mathematical operations and tasks, such as interpolation,
2.	Apply numerical methods to obtain approximate solutions to mathematical problems.
	approximate solutions to otherwise intractable mathematical problems.
1.	Demonstrate understanding of common numerical methods and how they are used to obtain

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	To provide the student with numerical methods of solving the non-linear equations, interpolation,
	differentiation, and integration.
CO2	To improve the student's skills in numerical methods by using the numerical analysis software
	and computer facilities.
CO3	To improve the student's skills in apply Trapezoidal and Simpson's rules, analyze error &
	convergence, and use composite methods for accuracy.

Unit-1	Interpolation	10
	Interpolating polynomials, Uniqueness of interpolating polynomials. Linear, Quadratic	
	and Higher order interpolation. Lagrange's Interpolation. Finite difference operators:	
	Shift operator, forward, backward and central difference operator, Average operator and	
	relation between them. Difference table, Relation between difference and derivatives.	
	Interpolating polynomials using finite differences Gregory-Newton forward difference	
	interpolation, Gregory-Newton backward difference interpolation, Stirlings Interpolation.	
	Results on interpolation error.	
Unit-2	Polynomial Approximations and Numerical Differentiation	10
	Piecewise Interpolation: Linear, Quadratic and Cubic. Bivariate Interpolation: Lagrange's	
	Bivariate Interpolation, Newton's Bivariate Interpolation. Numerical differentiation:	

	Numerical differentiation based on Interpolation, Numerical differentiation based on	
	finite differences (forward, backward and central), Numerical Partial differentiation	
Unit-3	Numerical Integration	10
	Numerical Integration based on Interpolation. Newton-Cotes Methods, Trapezoidal rule,	
	Simpson's 1/3rd rule, Simpson's 3/8th rule. Determination of error term for all above	
	methods. Convergence of numerical integration: Necessary and sufficient condition (with	
	proof). Composite integration methods; Trapezoidal rule, Simpson's rule Numerical	
	Solutions of initial value ODE's such as Taylor Series Method, Euler's Method, Modified	
	Euler's Method, Runge- Kutta Methods of fourth order.	

1. Linear, Quadratic and Higher order interpolation, Interpolating polynomial by Lagrange's Interpolation

2. Interpolating polynomial by Gregory-Newton forward and backward difference Interpolation and Stirling Interpolation.

3. Bivariate Interpolation: Lagrange's Interpolation and Newton's Interpolation

4. Numerical differentiation: Finite differences (forward, backward and central), Numerical Partial differentiation

5. Numerical differentiation and Integration based on Interpolation

6. Numerical Integration: Trapezoidal rule, Simpsons 1/3rd rule, Simpsons 3/8th rule Composite integration methods: Trapezoidal rule, Simpsons rule Euler's Method, Modified Euler's Method, Runge- Kutta Methods of second order.

7. Miscellaneous theory questions on all units

Reference Books:

1. Kendall E, Atkinson, An Introduction to Numerical Analysis, Wiley.

2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.

3. S.D. Conte and Carl de Boor, Elementary Numerical Analysis, An algorithmic approach, McGraw Hill International Book Company.

- 4. S. Sastry, Introductory methods of Numerical Analysis, PHI Learning.
- 5. Hildebrand F.B, Introduction to Numerical Analysis, Dover Publication, NY.
- 6. Scarborough James B., Numerical Mathematical Analysis, Oxford University Press, New Delhi.

Semester -VI Paper : SEC Course Code: VSMA359 Credits: 2 (PYTHON PROGRAMMING)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Master the fundamentals of writing Python scripts and Learn core Python scripting elements such
	as variables and flow control structures.
2.	Discover how to work with lists and sequence data and Write Python functions to facilitate code
	reuse.
3.	Use Python to read and write files and Make their code robust by handling errors and exceptions
	properly.
4.	Work with the Python standard library and Explore Python's object-oriented features Use Python
	libraries to generate graphs, visualize 3D plots.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Implement Conditionals and Loops for Python Programs.
CO2	Write, Test and Debug Python Programs.
CO3	Create visualizations and graphical representations of data and mathematical concepts using
	libraries like matplotlib.

Unit	Contents	No. of
		lectures
Unit-1	Introduction to Python	10
	A brief introduction about Python and installation of anaconda. ii. Numerical computations in Python including square root, trigonometric functions using math and cmath module. Different data types in Python such as list, tuple and dictionary, If statements, for loop and While loops and simple programmes using these, User-defined functions and modules. Various use of lists, tuple and dictionary, Use of	
	Matplotlib to plot graphs in various formats.	
Unit-2	Advanced topics in Python	10
	Classes in Python, Use of Numpy and Scipy for solving problems in linear algebra	
	and calculus, differential equations, Data handling using Pandas.	

Unit-3	Iterations and Conditional statements	10
	Conditional and alternative statements, Chained and Nested Conditionals, Tables	
	using While Functions, User defined functions, Parameters and arguments,	
	Installation of numpy, matplotlib packages, Graphs plotting of functions, Different	
	formats of graphs, PyDotPlus (Scalable Vector Graphics), PyGraph viz. Decorate	
	Graphs with Plot Styles and Types, Polar charts: Navigation Toolbar with polar plots,	
	Control radial and angular grids, Three-dimensional Points and Lines, Three-	
	dimensional Contour Plots, Wireframes and Surface Plots.	

List of Practicals:

- 1.Introduction to Python
- 2.Python Data Types
- 3.Control statements in Python
- 4.Control Structures: If Statements,
- 5.Loops: For and While
- 6.User-Defined Functions
- 7.Data Visualization with Matplotlib
- 8. Classes and Objects in Python
- 9. Using Numpy and Pandas
- 10.Graph plotting 2D & 3D

- 1. Fundamentals of Python First programs 2nd edition Kenneth A Lambert, Cengage,
- 2. Doing Math with Python Amit Saha, No starch Press,
- 3. Problem solving and Python programming- E. Balgurusamy, Tata McGraw Hill.
- 4. Python: Notes for Professionals, Goalkicker.com, Free Programming books.

Semester – VI Paper: MINOR Course Code: VSMA360 Credits: 2 (INTERGRAL TRANSFORMS)

Course Learning Objectives

Upon completion of the course the student will be able to understand

1.	Understand the fundamental concepts of Laplace and Fourier transforms, including their definitions,
	kernels, and conditions for existence.
2.	Apply the properties of Laplace and Fourier transforms, such as linearity, shifting, scaling, and
	convolution, to solve differential and integral equations
3.	Master the techniques for calculating the Laplace and inverse Laplace transforms of elementary and
	complex functions using properties and methods like partial fraction decomposition.
4.	Explore the applications of Fourier transforms in solving problems related to signal processing, heat
	conduction, and partial differential equations.

COURSE OUTCOME

Upon completing the course the student will be able to

CO1	Solve complex problems involving Laplace transforms and their inverses, leveraging the associated
	properties and theorems.
CO2	Analyze and solve engineering and mathematical problems using Fourier transforms and their
	properties.
CO3	Demonstrate proficiency in using Laplace and Fourier transforms to handle real-world applications,
	such as modeling dynamic systems and analysing signals.

Unit	Contents	No. of
		lectures
Unit-1	Laplace transform and Their Basic Properties	10
	Basic concept & Definition of Integral Transform, Definition of the Laplace	
	transform, Kernel of Laplace Transform, Definition of Sectional or piecewise	
	continuity& Functions of exponential order, Sufficient conditions for existence of	
	Laplace transform, Laplace transforms of elementary functions. Some important	
	properties of Laplace transforms: Linearity property, first translation or shifting	
	property, second translation or shifting property, change of scale property, Laplace	

	transform of derivatives, Laplace transform of integrals, Multiplication by t, Division	
	by t.	
Unit-2	Inverse Laplace Transform	10
	Definition of inverse Laplace transforms, Uniqueness of inverse Laplace transform.	
	Inverse Laplace transform of some functions. Some important properties of inverse	
	Laplace transforms. Linearity property, first translation or shifting property, second	
	translation or shifting property, change of scale property, Inverse Laplace transform	
	of derivatives, Inverse Laplace transform of integrals, Multiplication by s^n , Division	
	by s. Convolution Theorem, Partial fraction Method.	
Unit-3	Fourier Transforms and Its Applications	10
	Definition, Fourier integral, Fourier transform, inverse transform, Fourier transform	
	of derivatives, convolution, Parseval's theorem, Applications.	

Reference Books:

- Murray R. Spiegel, Schaum's Outline Series, Theory and Problems of Laplace Transforms, Mc Graw Hill Ltd, New York, 1965.
- Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Second Edition, C. R. C. Press, London, 2007.
- Phil Dyke, An Introduction to Laplace Transforms and Fourier Series, Second Edition, Springer-Verlag London, 2014.
- 4. Joel L. Schiff, The Laplace Transform: Theory and Applications (Undergraduate Texts in Mathematics), Springer.
- 5. E. Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John & Wiley Sons, U.K., 2016.
